首页> 外文会议>World petroleum congress >CLIMATE CHANGE AND SEQUESTRATION OF CO2 IN GEOLOGICAL MEDIA: A VIABLE OPTION FOR THE ENERGY INDUSTRY
【24h】

CLIMATE CHANGE AND SEQUESTRATION OF CO2 IN GEOLOGICAL MEDIA: A VIABLE OPTION FOR THE ENERGY INDUSTRY

机译:地质媒体中CO2的气候变化和封存:能源行业的可行选择

获取原文
获取外文期刊封面目录资料

摘要

Atmospheric concentrations of CO2, a major greenhouse gas, have risen primarily as a consequence of fossil fuel combustion for energy production. The developed world has committed to reduce by 2012 the release into the atmosphere of anthropogenic CO2 at levels on average lower by 5.2% than those of 1990. Mitigation of human-induced climate change involves basically three approaches. The first approach is to increase the efficiency of primary energy conversion and end use. The second approach is to substitute lower-carbon or carbon-free energy sources for the current sources. The third approach is carbon sequestration. Any viable system for sequestering carbon must be safe, environmentally benign, effective, economical and acceptable to the public. Sequestration of CO2 in geological media is likely to provide the first large-scale opportunity for concentrated sequestration of CO2, being immediately applicable as a result of the experience already gained in oil and gas production, and storage of natural gas. Given their inherent advantages, such as availability, competitive cost, and ease of transport and storage, fossil fuels will remain a major component of world’s energy supply in the foreseeable future. Fossil fuels are serendipitously linked with sedimentary basins in which CO2 can be sequestered1. CO2 can be sequestered in structural or stratigraphic traps, similarly to hydrocarbons trapped in natural reservoirs. Depleted gas reservoirs are primary candidates as geological traps for CO2. Carbon dioxide can be trapped by dissolution in oil or in deep brines. Solubility trapping in oil still requires a geological trap (the oil reservoir). The technology is commercially proven and applied in enhanced oil recovery operations. Up to 30 % of CO2 injected in deep saline aquifers dissolves over time in the formation water2. Injection and dissolution of CO2 in regional-scale flow systems leads to hydrodynamic trapping beneath competent, regional-scale sealing aquitards3. A considerable increase in permanently sequestered CO2 by injection in deep aquifers would be achieved through mineral trapping3. Preferential adsorption of gaseous CO2 into the coal matrix and methane release leads to adsorption trapping in coal beds4. Injection of CO2 into deep uneconomic coal beds has the added advantage that it releases methane that can be produced in enhanced coalbed methane recovery4. Cavity trapping refers to CO2 injection in mined caverns in salt beds and domes, similarly to the storage of natural gas. Although salt caverns theoretically have a large storage capacity, the associated costs are too high and the environmental problems related to brine disposal are significant. The selection of the method, strata and site for CO2 sequestration in geological media depends on a number of specific criteria being met. These criteria are scale dependent, some applying at the basin scale, other being site specific. The basin-scale criteria5 relate to: 1) tectonic setting, b) hydrodynamic and geothermal regimes, c) hydrocarbon potential and basin maturity; d) surface infrastructure; and e) socio-political conditions in the jurisdiction covering the basin. The sitespecific criteria fall into several categories: 1) surface; 2) in-situ conditions; 3) storage capacity; 4) injectivity and flow dynamics; and 5) sequestration efficiency (confinement safety). The surface infrastructure for CO2 separation, capture, transport and injection into the ground,
机译:主要温室气体的大气浓度,主要是由于化石燃料燃烧对能源生产的结果。发达国家致力于将2012年减少到2012年的人为二氧化碳的气氛平均低于1990年的人为水平。人类诱发气候变化的减轻涉及基本上三种方法。第一种方法是提高主要能量转换和最终用途的效率。第二种方法是替代电流源的低碳或无碳能源。第三种方法是碳封存。任何用于抵消碳的可行系统必须安全,环境良好,有效,经济,可接受。在地质介质中的二氧化碳的封存可能为二氧化碳浓缩封存的第一个大规模机会提供,立即适用于已在石油和天然气生产中获得的经验,以及天然气的储存。鉴于其固有的优势,如可用性,竞争成本和易于运输和储存,化石燃料将仍将在可预见的未来成为世界能源供应的主要组成部分。化石燃料与沉积盆地连续连接,其中CO2可以螯合1。 CO 2可以在结构或地层陷阱中隔离,类似于捕获在天然储层中的碳氢化合物。耗尽的气体储层是二氧化碳的地质疏水阀的主要候选者。二氧化碳可以通过油或深盐水中的溶解捕获。溶解度诱捕油仍需要地质陷阱(储油液)。该技术经过商业经验证明并应用于增强的采油作业。高达30%的盐水含水层注入的二氧化碳溶解在地层水中随着时间的推移。 Co2在区域尺度流动系统中的注射和溶解导致流体动力学捕获位于职能下,区域规模的封闭水管3。通过矿物质捕获3,通过注射液中预热的二氧化碳的相当大增加。将气态CO2加入煤基质和甲烷释放的优先吸附引起煤层中的吸附捕获。将CO2注入深度不经济的煤层具有额外的优点,即它释放可在增强的煤层溶液回收中生产的甲烷。腔诱捕是指在盐床和圆顶的开采洞穴中的CO2注射,类似于天然气的储存。虽然盐洞理论上具有大的储存能力,但相关成本太高,与盐水处理相关的环境问题是显着的。在地质介质中选择方法,地层和部位的CO2封存取决于所满足的许多特定标准。这些标准依赖于尺度,有些申请盆地规模,其他是特定的现场。盆地标准5涉及:1)构造,B)流体动力学和地热方案,C)烃潜力和盆地成熟; d)表面基础设施; e)涵盖盆地的管辖权的社会政治条件。鉴别的标准属于几个类别:1)表面; 2)原位状况; 3)存储容量; 4)注射和流动动态; 5)隔离效率(限制安全)。 CO2分离,捕获,运输和注射到地面的表面基础设施,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号