首页> 外文会议>World Conference on Non-Destructive Testing >Microwave Nondestructive Testing of Composite Materials using Free-Space Microwave Measurement Techniques
【24h】

Microwave Nondestructive Testing of Composite Materials using Free-Space Microwave Measurement Techniques

机译:使用自由空间微波测量技术微波无损检测复合材料

获取原文
获取外文期刊封面目录资料

摘要

Microwave Nondestructive Testing (MNDT) techniques have advantages over other NDT methods (such as radiography, ultrasonics, and eddy current) regarding low cost, good penetration in nonmetallic materials, good resolution and contactless feature of the microwave sensor (antenna). For MNDT techniques, the measured parameters are reflection coefficients, transmission coefficients, dielectric constants, loss factors, and complex permeabilities as a function of microwave frequency and temperature. These measured parameters can be related to material parameters of interest (e.g., flaws, binder content, moisture content, etc.) by suitable modeling and calibration. We have employed a free-space microwave measurement (FSMM) system which can measure electromagnetic properties (complex permittivity, complex permeability, reflection coefficients, etc.) for evaluation of composite materials. The main advantage of this FSMM system is that with suitable modifications, it is possible to make precise, accurate and reproducible MNDT measurements on composite materials under high or low temperature conditions and complex electromagnetic environmental conditions (e.g., DC biasing fields, ionizing radiation, etc.) due to contactless feature of free-space measurements. This measurement system consists of a pair of spot-focusing horn lens antennas, mode transitions, coaxial cables and a vector network analyzer (VNA). The inaccuracies in free-space measurements are due to two main sources of errors. 1) Diffraction effects at the edges of the material specimen. 2) Multiple reflection between horn lens antennas and mode transitions via the surface of the sample. The spot-focusing antennas are used for minimizing diffraction effects and free-space LRL (line, reflect, line) calibration method implemented on VNA eliminates errors due to multiple reflections. In this paper, we have used free-space implementation of reflection-transmission method for simultaneous determination of complex permittivity (ε~*) and complex permeability (μ~*) of magnetic materials. ε~* and μ~* values are reported for carbonyl iron loaded silicon rubber sheets with carbonyl iron concentration varying from 20% to 50% (by volume).
机译:微波无损检测(MNDT)技术具有与其他NDT方法(如造面,超声波和涡流)的优势,关于低成本,在非金属材料中的良好穿透,微波传感器(天线)的良好分辨率和非接触特征。对于MNDT技术,测量的参数是反射系数,透射系数,介电常数,损耗因子和作为微波频率和温度的函数的复杂渗透。通过合适的建模和校准,这些测量的参数可以与感兴趣的物质参数(例如,缺陷,粘合剂含量,水分含量等)有关。我们使用了一种可用空间微波测量(FSMM)系统,其可以测量用于评估复合材料的电磁特性(复杂介电常数,复杂渗透率,反射系数等)。该FSMM系统的主要优点是,具有适当的修饰,可以在高温或低温条件下对复合材料进行精确,准确和可重复的MNDT测量,以及复杂的电磁环境条件(例如,直流偏置场,电离辐射等) 。)由于自由空间测量的非接触功能。该测量系统包括一对点聚焦喇叭镜头天线,模式转换,同轴电缆和矢量网络分析仪(VNA)。自由空间测量中的不准确性是由于两个主要错误来源。 1)材料标本边缘处的衍射效应。 2)喇叭透镜天线之间的多重反射和通过样品表面的模式转换。聚焦天线用于最小化VNA在VNA上实现的衍射效果和自由空间LRL(线,反射,线)校准方法消除了由于多个反射而导致的误差。在本文中,我们使用了反射传输方法的自由空间实现,同时测定磁性材料的复杂介电常数(ε〜*)和复杂渗透率(μ〜*)。 ε〜*和μ〜*值报告用于羰基的碳基硅橡胶板,羰基铁浓度从20%到50%(体积)不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号