首页> 外文会议>International Mine Water Association Congress >Reactive Transport Modeling forthe Proposed Dewey Burdock Uranium In-Situ Recovery Mine, Edgemont, South Dakota, USA
【24h】

Reactive Transport Modeling forthe Proposed Dewey Burdock Uranium In-Situ Recovery Mine, Edgemont, South Dakota, USA

机译:Extentive Transporting Modepe提出杜威牛蒡铀原位恢复矿,Edgemont,南达科他州,美国

获取原文
获取外文期刊封面目录资料

摘要

In-situ recovery (ISR) mining extracts uranium by enhanced dissolution and mobilization of solid-phase uranium in sandstone aquifers. Geochemical changes that occur due to the ISR mining process are important for local groundwater users, regulatory agencies, and other stakeholders to understand in order to evaluate the potential effects on surrounding groundwater quality during and after mining. Reactive transport modeling is being used at the proposed Dewey Burdock ISR mine to simulate the geochemistry of: 1) uranium roll-front deposition; 2) current groundwater conditions; 3) mining processes; 4) post-mining restoration; and, 5) long-term groundwater quality after restoration. This modeling uses groundwater flow coupled with rock/water interations to understand geochemical changes during each stage. Conceptually, uranium roll-fronts are formed as oxygenated, uranium-rich groundwaters enter reducing zones where uranium minerals precipitate to form uranium ore. Through geologic time, the groundwater flow direction and incoming groundwater geochemistry can change, which may or may not alter the uranium roll-front deposit. During the mining process, oxygen and a complexing agent (such as carbon dioxide) are added to oxidize, solubilize, and remove the uranium. Post-mining, the mining solution is removed, and reducing agents may be added to re-precipitate uranium. Longer term geochemistry depends upon the remaining solid-phase minerals, their reactivity, and the composition of the incoming groundwater. All of these processes are highlighted through the use of a simple three-dimensional reactive transport model (groundwater flow and geochemistry). While this research focuses specifically on the proposed Dewey Burdock uranium ISR site near Edgemont, South Dakota, the procedures described are generally applicable to any proposed uranium ISR mine.
机译:原位恢复(ISR)采矿通过增强砂岩含水层的固相铀的溶解和动员来提取铀。由于ISR采矿过程而发生的地球化学变化对于本地地下水用户,监管机构和其他利益相关者来说是重要的,以便在挖掘期间和矿业期间对周围地下水质量的潜在影响。在提出的杜威群岛ISR Mine使用反应性运输建模,以模拟地球化学:1)铀辊前沉积; 2)当前地下水条件; 3)采矿过程; 4)挖掘后恢复; 5)恢复后的长期地下水质量。该建模使用地下水流与岩石/水交互相结合,以了解每个阶段的地球化学变化。概念上,铀辊前沿形成氧化,富含铀的地下水进入减少区,其中铀矿物沉淀成形成铀矿石。通过地质时间,地下水流向和进入地下水地球化学可以改变,这可能是也可能不会改变铀卷前沉积物。在采矿过程中,加入氧气和络合剂(例如二氧化碳)以氧化,溶解和除去铀。挖掘后,除去矿井溶液,可以加入还原剂以重新沉淀铀。长期地球化学取决于剩余的固相矿物,它们的反应性和进入地下水的组成。通过使用简单的三维反应输送模型(地下水流动和地球化学)突出所有这些过程。虽然本研究专注于Edgemont,南达科他州拟议的杜威群铀ISR网站,但所述程序通常适用于任何提出的铀ISR矿。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号