首页> 外文会议>European mechanics of materials conference on processes, microstructures and mechanical properties >Stacking fault energy (s.f.e.) and grain size effects (d) on the tensile behaviour of f.c.c. polycrystalline alloys at 300 K: Back stress and effective stress evolutions
【24h】

Stacking fault energy (s.f.e.) and grain size effects (d) on the tensile behaviour of f.c.c. polycrystalline alloys at 300 K: Back stress and effective stress evolutions

机译:堆叠故障能量(S.F.E.)和晶粒尺寸效应(D)对F.C.C的拉伸行为。多晶合金为300 k:背部应力和有效的应力演进

获取原文

摘要

The aim of this work is to provide experimental results to understand grain size and stacking fault energy effects (γ/μb) on tensile hardening f.c.e. alloys. The hardening rate is discussed in terms of back stress (X) and effective stress (Σ_(ef)) evolutions. Irrespective of the material studied, tensile hardening behaviour before necking is divided into three stages (Ⅰ, Ⅱ, and Ⅲ). These stages were previously discussed using qualitative and semi-quantitative TEM observations. In particular, we have shown that intergranular back stress evolution relates the hardening rate in stage Ⅰ, where single and planar slip are observed in most of the grains. In the other stages, latent hardening and intragranular back stress are the main parts of the hardening rate in relation with the formation of heterogeneous dislocation structures. An increase of grain size and/or a decrease of stacking fault energy favour planar slip and then stage Ⅰ, in terms of plastic strain. The transition between stage Ⅱ and stage Ⅲ seems to be less dependent on grain sizes irrespectively of s.f.e.. The classical Hall-Petch relation is discussed in terms of back and effective stresses for different plastic strain levels. If these two components verify the Hall-Petch relation, however, effective stress is less dependent on grain size than back stress. This last dependence increases in stage Ⅰ, where intergranular back stress is the main part of hardening and decreases in the other stages where this component decreases and intragranular back stress increases. The grain size effect on effective stress is well explained in terms of mean length path using dislocation modelling.
机译:这项工作的目的是提供实验结果,以了解颗粒尺寸和堆叠故障能量效应(γ/μB)在拉伸硬化F.C.。合金。在后应力(x)和有效应力(σ_(ef))演进方面讨论了硬化率。无论研究所研究的材料,颈颈前的拉伸硬化行为分为三个阶段(Ⅰ,Ⅱ,Ⅲ)。先前使用定性和半定量的TEM观察讨论了这些阶段。特别地,我们已经表明,晶间背应力进化涉及Ⅰ期的硬化速率,其中在大部分晶粒中观察到单一和平面滑动。在另一个阶段,潜在的硬化和腔内背应力是与形成异质位错结构的关系中的固化速率的主要部分。在塑料应变方面,增加粒度和/或堆叠故障能量最有利于平面滑动和阶段Ⅰ期的减少。 Ⅱ期和Ⅲ期之间的过渡似乎不太依赖于S.F.E的晶粒尺寸..在不同塑性应变水平的背部和有效应力方面,讨论了经典的霍尔波相符。然而,如果这两个组件验证了霍尔波格关系,则有效应力较少依赖于比背部应力的晶粒尺寸。最后依赖性在Ⅰ期内增加,其中晶间背部应力是硬化的主要部分,并且该组分降低和腔内背应力的其他阶段减少。在使用位错建模的平均长度路径方面,对有效应力的晶粒尺寸效应很好地解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号