首页> 外文会议>World Conference on Carbon >PHOTOCATALYTIC DEGRADATION OF PHENOL BY TiOi/CARBON CATALYSTS: THE EFFECT OF IRRADIATION WAVELENGTH
【24h】

PHOTOCATALYTIC DEGRADATION OF PHENOL BY TiOi/CARBON CATALYSTS: THE EFFECT OF IRRADIATION WAVELENGTH

机译:TiOI /碳催化剂的光催化降解苯酚:照射波长的效果

获取原文

摘要

Heterogeneous photocatalysis is widely recognized as an effective technology for the degradation and mineralization of recalcitrant organic compounds. In order to overcome the limitations of conventional semiconductors, carbons materials have been extensively investigated in a number of photoassisted reactions. In fact, many studies show that adding a carbonaceous component can enhance the performance of the photoactive material, being attributed to several factors associated to visible light absorption, the porosity of the carbon support, strong interfacial electronic effects, and the intrinsic photochemical activity of certain carbons [1-3]. It is well known that only photons with A<400 nm can be absorbed by TiO2 to induce the excitation of electrons from the valence to the conduction band, and that many organic compounds present a strong absorption of light in this region, leading to direct degradation in the absence of a catalyst (photolytic reaction). The origin and dependence of the carbon/light interactions with the irradiation source still remains uncertain and in the case of hybrid carbon/semiconductor catalysts, the situation is even more complex. Our recent investigations have demonstrated the photoactivity of semiconductor-free nanoporous carbons under UV and visible light [3-5] and their ability to photogenerate oxygen reactive species as the key aspect to achieve enhanced degradation yields of pollutants from solution.
机译:异质光催化被广泛认识为乙酸性有机化合物的降解和矿化的有效技术。为了克服常规半导体的局限性,碳材料已在许多光学涂养反应中广泛研究。事实上,许多研究表明,添加碳质成分可以增强光活性物质的性能,归因于与可见光吸收相关的几个因素,碳载体的孔隙率,强烈的界面电子效应以及某些内在的光化学活性。碳[1-3]。众所周知,只有具有<400nm的光子可以被TiO 2吸收,以诱导电子从扶手到导带的电子激发,并且许多有机化合物在该区域中存在强烈的光吸收,导致直接降解在没有催化剂(光解反应)的情况下。碳/光相互作用与辐射源的起源和依赖性仍然不确定,并且在杂交碳/半导体催化剂的情况下,情况更复杂。我们最近的调查已经证明了紫外线和可见光下半导体无纳米多孔碳的照片[3-5],并将氧气反应性物质作为关键方面的光学能力,以实现来自溶液的增强污染物的降解产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号