首页> 外文会议>World Conference on Carbon >REACTIVITY OF CARBIDES WITH FLUORINE OR HOW TO GET CARBON NANOSTRUCTURES?
【24h】

REACTIVITY OF CARBIDES WITH FLUORINE OR HOW TO GET CARBON NANOSTRUCTURES?

机译:用氟或如何获得碳纳米结构的碳化物反应性?

获取原文

摘要

Introduction Since a decade, a new way to produce new nanoporous carbons is to use chlorination on carbide in order to etch metallic atoms and to leave the carbon matrix [1,2]. Gaseous chlorine reacts with metallic atoms at high temperature (600 -900°C) to form most of the time gaseous chloride which is easily removed and carbon called carbide derived carbon (CDC). Many studies have been devoted to the chlorination of silicon and titanium carbide because of the multiplicity of carbon structures found after chlorination : from amophous carbon to carbon onions and diamond [3]. However, in order to thermodynamically favor the formation of SiCl_4 or TiCl_4 rather than CCl_4, a chlorination temperature of about 900°C is required [4]. Another way of halogenation can be studied in order to decrease the synthesis temperature: fluorination [5,6,7]. In the same way than chlorination, fluorination of silicon or titanium carbide can form fluoride and carbon. For SiC, only one type fluoride can be obtained: SiF_4 which is gaseous at room temperature. For TiC, two types of fluorides could be formed: TiF_3 and TiF_4 which are solids at room temperature. Such differences of fluoride nature combined to the different carbides morphology (highly cristallized powder or thin solid films) imply to modulate the applied fluorination method. Dynamic and static fluorination methods applied on metallic titanium carbide powder demonstrate the ability of fluorine to etch titanium atoms from the carbide at low temperatures (<150°C) and to form a microporous carbon with a monodisperse pore size distribution. Fluorination of covalent silicon carbide has also been conducted to evaluate effects of carbide nature. An accurate control of the fluorine / carbide stoichiometry is needed to avoid carbon fluorination. Two fluorination processes can be used: dynamic fluorination assisted by quantitative in situ gas phase FTIR or controlled fluorination by the decomposition of a fluorinating agent such as xenon difluoride. The first process applied on powder allows to determine kinetics of gaseous SiF_4 and fluorocarbons formation during the fluorination . The second one has been successfully applied on SiC thin films in spite of the low level of fluorine needed for the selective etching.
机译:简介自十年以来,生产新的纳米多孔碳的新方法是在碳化物上使用氯化以蚀刻金属原子并留下碳基质[1,2]。气态氯气在高温(600-900℃)的金属原子中反应,形成大部分时间的氯化物,其易于除去,并且称为碳化物衍生的碳(CDC)。由于氯化后发现的多种碳结构,许多研究已经致力于硅和碳化钛的氯化,因此来自碳洋葱和金刚石的散碳[3]。然而,为了热力地赞成SiCl_4或TiCl_4而不是CCl_4的形成,需要约900℃的氯化温度[4]。可以研究另一种卤化方法以降低合成温度:氟化[5,6,7]。以与氯化相同的方式,硅或碳化钛的氟化可以形成氟化物和碳。对于SiC,可以仅获得一种氟化物:SiF_4,在室温下是气态的。对于TiC,可以形成两种类型的氟化物:TIF_3和TIF_4,其在室温下是固体。氟化物性质与不同的碳化物形态(高频克里斯基粉末或薄实心膜)组合的这种差异意味着调节施加的氟化方法。施加在金属钛碳化物上的动态和静态氟化方法证明了氟在低温(<150℃)下蚀刻碳化钛的能力,并形成具有单分散孔径分布的微孔碳。还进行了共价碳化硅的氟化,以评估碳化物性质的作用。需要精确控制氟/碳化物化学计量以避免碳氟化。可以使用两种氟化方法:通过定量原位气相FTIR或通过分解氟化剂如氙氟化物的分解来辅助的动态氟化。在粉末上施加的第一个方法允许在氟化过程中确定气态SIF_4和氟碳碳形成的动力学。尽管选择性蚀刻所需的氟含量较低,但第二个已经成功地应用于SiC薄膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号