首页> 外文会议>ASME/JSME Thermal Engineering Joint Conference >A MECHANISTIC MODEL FOR CRITICAL HEAT FLUX OF SUBCOOLED FLOW BOILING
【24h】

A MECHANISTIC MODEL FOR CRITICAL HEAT FLUX OF SUBCOOLED FLOW BOILING

机译:过冷流沸腾临界热通量的机制模型

获取原文

摘要

This paper presents a mechanistic model for the prediction of CHF of subcooled flow boiling based on liquid sublayer dryout model. In the model, By writing critical wavelength of Helmholtz Instability to both left and right sides of vapor blanket and by assuming these two wavelengths are equal to each other, the vapor blanket velocity U{sub}B can be written as a simple function of average velocity of liquid bulk V{sub}l which can be obtained by the knowledge we have known. Then, on the base of U{sub}B, other important parameters such as vapor blanket length L{sub}B and liquid sublayer thickness δ can be calculated easily. The model is simple with explicit physics nature, and is characterized by the absence of empirical constants. To verify the present model, two databases (include about 2400 points) are used. One gathered by Celata used to verify his model is characterized by high mass velocity and low-medium system pressure. The other gathered by Pei is characterized by high pressure and low-medium mass velocity. The verification showed that present model could keep its validity in a wide ranges of operating conditions (mass velocity up to 70 Mg/m{sup}2s, system pressure up to 17.5 MPa). Figure A-1 shows a comparison of calculated versus experimental CHF. About 89% of data points are predicted within ±30%. Comparison between Celata model and the present model shows that although present model shows a little worse prediction than Celata model with the data base collected by Eclat, it shows a much better prediction with the data base collected by PEI. A general better prediction than Celata model is obtained with both the databases collected by Celata and PEI. Predictions of some important parameters in liquid sublayer dryout model, such as vapor blanket velocity U{sub}B, initial liquid sublayer thickness δ, vapor blanket diameter D{sub}B and vapor blanket length L{sub}B, are also compared with Celata model during a wide range of operating conditions. The result shows that although the basic thought of two models diverse greatly, the predictions of these parameters differ not so much. The model gives a higher prediction at low L/D and shows this low L/D effect on CHF turns much more obvious with the increase of system pressure. That means, with the pressure increasing, on one side, L/D effect acts in much wider area (L/D effect area begins at higher L/D value). On the other side, in the L/D effect area, CHF jumping amplitude also increases greatly. The reason for this is still not clear. For the CHF at low L/D, as thought by authors, more investigation is needed.
机译:本文提出了过冷流动CHF的预测机械模型沸腾基于液体子层干涸模型。在模型中,通过Helmholtz不稳定性的临界波长写入蒸汽膜的左侧和右侧,并假定这两个波长彼此相等,蒸汽膜速度U {子}乙可以写成的平均的简单函数液体散装V {子}升的速度可通过我们已经知道的知识来获得。然后,U {子}乙的基础上,其他重要的参数,如蒸汽膜长度L {}子B和液体子层厚度δ可以容易地计算。该模型与明确的物理性质简单,并且特征在于没有经验常数的。为了验证本模型中,两个数据库(包括大约2400点)被使用。一个由Celata收集用于验证他的模型的特征在于高的质量速度和低中的系统压力。另一个由裴聚集的特征在于高的压力和低 - 中的质量速度。验证表明,本模型可以保持在的操作条件的宽范围内其有效性(质量速度高达70毫克/米{SUP} 2S,系统压力可达17.5兆帕)。图A-1所示的计算与实验CHF的比较。数据点的大约89%的±30%以内的预测。 Celata模型和本模型显示之间的比较,尽管本模型显示出比与由怡亨收集的数据基础Celata模型稍差预测,它示出了具有由PEI收集的数据的基础上更好的预测。比Celata模型的一般更好的预测与均由Celata和PEI收集的数据库获得。的液体子层干涸模型的一些重要的参数,如蒸汽膜速度U {子} B,初始液体子层厚度δ,蒸汽毯直径d {子} B和蒸汽膜长度L {子}乙预测,也与比较宽范围的操作条件期间Celata模型。结果表明,虽然两种模式有很大差别的基本思想,这些参数的预测不同,没有这么多。该模型给出了在低L / d高的预测,并显示在CHF这种低L / d的影响变为更加明显与系统压力的增加。这意味着,随着压力的增加,在一侧上,L / d的影响作用在宽得多的区域(L / d的影响区域始于较高的L / d值)。在另一侧,在L / d的影响区域,CHF跳跃振幅也大大增加。这样做的原因目前还不清楚。在低L / d瑞郎,由作者的思想,需要更多的调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号