首页> 外文会议>Conference on Electrical Insulation and Dielectric Phenomena >Thermodynamics and forces in charged solid insulators
【24h】

Thermodynamics and forces in charged solid insulators

机译:带电固体绝缘体中的热力学和力

获取原文

摘要

Thermodynamic framework is a powerful method to synthesise our knowledge on the material properties, but do not suffer the less step away. Compared to the neutral matter, dielectric thermodynamic has the difficult task to tackle with distantinteraction effects. This is overcome by introducing fields and related properties of the vacuum (energetic as stress).The thermodynamic description of the medium is achieved by adding two new variables to the classical description (temperature T deformation 250L? compositionγ{sub}α,...) These variables are the polarization P for the matter and the Maxwell (or mean)electric field E for the vacuum if the free energy is used as thermodynamic potential to characterized the system. Then, the expression of the matter free energy depends on the polarisation P and the vacuum related term that only depends on E must beadded.f{sub}(vol)(T,ε,γ{sub}α,P, E) = f{sub}(vol)(T,ε,γ{sub}α,P) +1/2ε{sub}0E{sup}2 From the thermodynamic potential the physical quantities (entropy energy, chemical potentials, stresses) are obtained as usually using partial derivatives. Themechanical forces that a dielectric can support are deduced after having added Maxwell electric tensor: σ{sub}(el)=ε{sub}0(E&D-1/2E.Dδ) whereδ is the unit tensor, D=ε{sub}0E+P and & the tensor product.The equation giving the evolution toward the equilibrium are also obtained; noticeably for the polarisation P. It is governed by the associated thermodynamic force: Ap=&f{sub}(vol)/&P-E.Then partial equilibrium between the matter and the electric field is considered We show that at the polarisation equilibrium:&f{sub}(vol)/&P=Eand a new internal variable D (displacement field) must be substituted in replacement of E and P while the value of the thermodynamic potential remains unchanged:f{sub}(eq)(-, D)=f{sub}(vol)(-, P, E)Furthermore the electric field is given byE=&f{sub}(eq)/&DThe previous results are illustrated with expressing the electro-mechanical term of the linear polarisation: Δf{sub}(vol)(matter) = P{sup}2/2Kwhere a priori K=K(T,ε). Then, the classical expressions are recovered, noticeably for the polarisation equilibrium:P=KE.In the case of a linear dependence of K inεand for an isotropic medium:K=K{sub}0+1ε+α{sub}2 trερ, whereα{sub}1 etα{sub}2 are the classical electrostriction coefficients. The corresponding polarisation stresses are deduced (or electromechanical stresses at the polarisation equilibrium): σ{sub}(el-mec)=1/2(α{sub}1ExE + α{sub}2 E{sup}2δ) From these stresses and the Maxwell tensor are deduced the electrical force and the electromechanical force that are suffered by any matter element in a homogeneous dielectric: f= -1/4(α1 +2α{sub}2 gradE{sup}2 +(1-α{sub}1/2ε{sub}0)ρ{sup}(ext) where ext are the extinsic charges.We applied the thermodynamic procedure for evaluating the forces in a plane capacitor. The procedure is also applied for recovering the expression of the polaron energy. Also, in a model of continuous matter the energy components (total energy, activation energy) of the charge trapping by an ion are analysed.
机译:热力学框架是一种综合我们对材料特性知识的强大方法,但不会遭受较低的阶梯。与中性物质相比,电介质热力学具有难以与距离互动效应的困难的任务。这是通过将真空的字段和相关性能(作为压力为强度)来克服这一点。通过将两个新的变量添加到经典描述(温度T变形250Lα,......)来实现介质的热力学描述。)这些变量是如果使用自由能量作为表征系统的热力学电位,则这些变量是用于真空的物质和麦克斯韦(或平均值)电场E.然后,无数能量的表达取决于偏振P和真空相关术语,其仅取决于E必须BEEADD.F {sub}(t,ε,γ}α,p,e)=从热力学潜在地获得来自热力学势的物理量(熵)(T,ε,γ,γ}α,p)+1/2ε{sub} 0e {sup} 2。获得物理量(熵能,化学电位,应力)通常使用部分衍生物。在添加麦克斯韦尔电张量之后推导出电介质可以支持的机械力:Σ{sub}(el)=ε{sub} 0(e&d-1 /2e.dδ),其中δ是单位张量,d =ε{sub} 0e + p和张量产品。还获得了向均衡进化的等式也是如此;对于极化P.它由相关的热力学力:ap =&f {sub}(体积)/&p-e.then在物质和电场之间的部分平衡所示,我们认为在极化平衡:&f {sub}(vol)/&p = eand新的内部变量d(位移场)必须在更换e和p时被替换,而热力学潜力的值保持不变:f {sub}(eq)( - ,d) = F {sub}(VOL)( - ,p,e)此外,电场由Exce =&F {Sub}(EQ)/&D以表达线性极化的电动术语表示:ΔF{子}(vol)(物)= p {sup} 2 / 2kwhere a先验k = k(t,ε)。然后,显着恢复经典表达式,用于偏振平衡:p = ke.IN当各向同性介质的KInεand的线性依赖性的情况:k = k {sub} 0 +1ε+α{sub} 2 TRερ,其中α{sub} 1等α{sub} 2是经典电击定系数。从这些应力中推断出(偏振平衡处的机电应力):σ{子}(EL-MEC)= 1/2(α{sub} 1exe +α{sub} 2 e {sup}2Δ)麦克斯韦尔张量被推导出由均匀电介质中的任何物质元素所患者的电力和机电力:f = -1/4(α1+2α{sub} 2级{sup} 2 +(1-α{{子} 1 /2ε{sub} 0)ρ{sup}(ext),其中ext是extIpsic电荷。我们应用了用于评估平面电容器中的力的热力学过程。该过程也应用于恢复极化子的表达式能量。此外,在连续物质的模型中,分析了通过离子的电荷捕获的能量分量(总能量,激活能)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号