首页> 外文会议>European Turbulence Conference >Liquid jet instability and atomization in a coaxial gas stream
【24h】

Liquid jet instability and atomization in a coaxial gas stream

机译:同轴气流中的液体射流不稳定性和雾化

获取原文
获取外文期刊封面目录资料

摘要

The breakup and atomization of a liquid jet by a high velocity turbulent gas stream is known as airblast atomization (Lefebvre, 1989). In liquid propellant rocket engines for instance liquid oxygen is atomized by a high speed annular hydrogene gas jet. Because of these important practical applications a relatively large number of investigations have considered this problem but have to a large extent been limited to measuring the drop size at a certain distance downstream of the nozzle, as afunction of the flow parameters at the nozzle exit. The correlation of the drop size, expressed for instance by the Sauter mean diameter D{sub}32, with gas velocity is of the form D{sub}32~U{sup}-b with b ranging from 0.8 to 1.4 and even 2. Variousattempts have been made to explain such a power law (see Lasheras et al, 1998). The other important quantities are the spreading rate of the spray and the liquid intact or potential cone. length. The latter has generally been correlated with theaerodynamic Weber number and the liquid Reynolds number (Arai et al., 1985). When the Weber number is large, a more relevant parameter in liquid jet breakup is the gas to liquid momentum flux ratio M = ρ{sub}gU{sub}g{sup}2/ρ{sub}1U{sub}1{sup}2(Hopfinger and Lasheras, 1994; Rehab et al., 1997). It has been demonstrated (Raynal, 1997) that in a certain range of M the liquid cone length is independent of Weber number and varies as M{sup}(-1/2). One of the open questions is the drop size resulting from the primary breakup.
机译:通过高速湍流气流的液体射流的分解和雾化称为空转雾化(Lefebvre,1989)。在液体推进剂的火箭发动机中,例如液氧通过高速环形氢气喷射而雾化。由于这些重要的实际应用,相对大量的研究已经考虑了该问题,但必须在很大程度上限制为测量喷嘴下游的一定距离处的跌幅尺寸,如喷嘴出口处的流动参数上流。滴尺寸的相关性,例如由燃烧器平均直径d {sub} 32表示,气体速度为d {sub} 32〜u {sup} -b,b为0.8至1.4甚至2 。已经做出了解释这样的权力法(见Lasheras等,1998)。其他重要数量是喷雾和液体完整或潜在锥体的扩散速率。长度。后者通常与Theaerodynamic韦伯号和液体雷诺数(Arai等,1985)相关联。当韦伯数是大的,在液体射流解体更相关的参数是气体到液体动压比M =ρ{子} GU {子}克{SUP} 2 /ρ{子} 1U {子} 1 {SUP 2(Hopfinger和Lasheras,1994; Rehab等,1997)。已经证明(Raynal,1997),在一定范围的m液体长度与韦伯数无关,随着M {sup}( - 1/2)而变化。其中一个开放性问题是初级分析产生的跌幅大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号