首页> 外文会议>International conference on coal science >COAL SCIENCE IMPACT ON COMBUSTION TECHNOLOGY
【24h】

COAL SCIENCE IMPACT ON COMBUSTION TECHNOLOGY

机译:煤炭科学对燃烧技术的影响

获取原文

摘要

The focus of this presentation is on combustion as used primarily for steam raising in power generation. Contributions of coal science to technology development are highlighted by examples. Coal combustion technology has developed from mainly empirical beginnings to its present day sophistication by the gradual application of coal combustion science. Early examples are Werkmeister's (1931) ingenious laboratory study simulating the combustion on a Travelling Grate Stoker by his observations of the time resolved processes of combustion in a fixed bed, and Nusselt's (1924) classical studies of pulverized coal flame propagation and the diffusion controlled burning law for pulverized coal particles. These investigations provided valuable tools to designers to improve combustion on the travelling grate by the zoned distribution of the air along the grate,and the sizing of combustion space in pulverized coal fired boilers , respectively. The question of internal burning of small coal particles, with pore diffusion and surface reaction playing important roles in the overall rate of combustion, was raised by Essenhigh (1955) following of which evidence for chemical rate control was obtained by a number of investigators. The practical significance of these findings was their contribution to the developing art of furnace flame modeling. Examples include the use of kinetic data in the pioneering CFD simulation by Richter and Quack (1974) of Hein's (1971) pulverized anthracite flame data. As information on the yield and kinetics of devolatilization became available (Kobayashi et. al. 1976); Suuberg et.al.(1979), bituminous and lower rank coals could also be treated with more confidence by CFD modeling. (Smoot et.al. 1993; Fiveland et. al. 1993; Lockwood et.al. (1994). In a recent report of the International Energy Agency (1997) a comprehensive review is presented of the state of the art of pulverized coal combustion modeling. Modeling can guide experiments in research and development, and assist engineering design by providing information on trends and relative significance of design and operating variables upon performance. In turn, coal combustion modeling remains to be strongly dependant on coal science inputs on combustion, pollutant emissions, and coal mineral malter transformation during combustion.
机译:该呈现的重点是燃烧,主要用于发电中的蒸汽。实施例突出了煤炭科学对技术发展的贡献。通过煤炭燃烧科学逐步应用,煤炭燃烧技术主要从主要的经验开始于其现今的复杂性。早期的例子是WERKMEISTER的(1931)巧妙的实验室研究通过他的观察到在固定床中燃烧的时间分辨过程的观察来模拟燃烧的燃烧,以及NUSELET(1924)粉煤火焰传播和扩散控制燃烧的常规研究粉煤颗粒的法律。这些调查为设计人员提供了有价值的工具,以通过沿着格栅分区的空气分布分布,以及分别在粉煤燃烧锅炉中的燃烧空间施加的燃烧空间的施胶来改善行驶炉的燃烧。小煤颗粒内部燃烧的问题,孔隙扩散和表面反应在整体燃烧速率下发挥着重要作用,由Essenhigh(1955)提出,其中通过许多调查人员获得了化学速率控制的证据。这些调查结果的实际意义是它们对炉火模型发展艺术的贡献。示例包括在HEIN(1971)粉碎的无烟煤火焰数据的RINGTER和CFD模拟中使用动力学数据。随着有关脱挥发化产量和动力学的信息变得可用(Kobayashi等。1976年); Suuberg et.Al.(1979),也可以通过CFD建模更令人信心地对沥青和较低的曲线进行处理。 (Smoot et.al.1993; Fiveland等。1993; Lockwood et.al.(1994)。在国际能源机构(1997)最近的一份全面审查中,呈现出粉煤的艺术状态燃烧建模。建模可以指导研发实验,并通过提供对性能的趋势和操作变量的趋势和相对意义的信息来帮助工程设计。反过来,煤炭燃烧建模仍然是强烈的依赖于燃烧煤炭科学投入的强烈依赖于煤炭科学投入,燃烧过程中污染物排放和煤矿麦芽转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号