首页> 外文会议>National Heat Transfer Conference >Time-and space-resolved plasma absorption of a femtosecond laser pulse in dielectrics
【24h】

Time-and space-resolved plasma absorption of a femtosecond laser pulse in dielectrics

机译:在电介质中飞秒激光脉冲的时间和空间分辨等离子体吸收

获取原文

摘要

During ultrafast laser ablation of dielectrics, the intense laser pulse ionizes the irradiated material and produces an optical breakdown region, or plasma, which is characterized by a high density of free electrons. These high-density electrons can efficiently absorb a large fraction of the laser irradiance energy, part of which will then be coupled into the bulk material, resulting in material removal through direct vaporization. The energy deposited into the material depends on the time- and space-dependent breakdown region, the plasma rise time, and the plasma absorption coefficient. Higher coupling efficiency results in higher material removal rate; thus energy deposition is one of the most important issues for ultrafast laser material processing. In the present work, a femtosecond breakdown model is applied to investigate energy deposition during ultrafast laser material interactions with water chosen as the particular material to investigate. One substantial contribution of the current work compared with the classical models is that the pulse propagation effect has been taken into account, which has been shown to become significant for pulse durations less than 10 picosecond. By accounting for the pulse propagation, the time- and space-resolved plasma evolution can be characterized with the femtosecond model, which, in turn, can determine the energy deposition through plasma absorption. With knowledge of the plasma absorption, changes in the pulse profile as it propagates in the focal region can be determined as well. Absorption of the laser pulse by plasma in water is compared to experimental data to validate the model. The present model also shows promise for determining the energy deposition in other transparent or moderately absorbing dielectric media during ultrafast laser processing.
机译:在超快激光烧蚀电介质期间,强烈的激光脉冲电离照射材料并产生光学击穿区域或等离子体,其特征在于自由电子的高密度。这些高密度电子可以有效地吸收大部分激光辐照度能量,然后将其部分耦合到散装材料中,从而通过直接蒸发来移除材料。沉积在材料中的能量取决于时间和空间依赖性的分解区域,等离子体上升时间和等离子体吸收系数。更高的耦合效率导致更高的材料去除率;因此,能量沉积是超快激光材料加工的最重要问题之一。在本作工作中,应用了飞秒击穿模型来研究超快激光材料与选择作为特定材料的水相互作用的能量沉积。与经典模型相比,当前工作的一个实质性贡献是已经考虑了脉冲传播效果,这已被证明对于小于10皮秒的脉冲持续时间变得非常重要。通过考虑脉冲传播,可以使用飞秒模型表征时隙和空间分辨的等离子体演化,这反过来可以通过等离子体吸收来确定能量沉积。通过了解等离子体吸收,也可以确定脉冲曲线在焦点区域中传播的变化。将通过等离子体在水中吸收激光脉冲与实验数据进行比较,以验证模型。本模型还示出了在超快激光加工期间确定其他透明或中度吸收介电介质中的能量沉积的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号