首页> 外文会议>National Heat Transfer Conference >Prediction and measurement of fuel cell flammability safety limits
【24h】

Prediction and measurement of fuel cell flammability safety limits

机译:燃料电池可燃性安全限制的预测和测量

获取原文

摘要

Leakage of the fuel through a possible crack in the solid electrolyte, or in the separator plate, of a fuel cell, to the oxidant side, can cause uncontrolled combustion. An experimental setup is design to simulate the above conditions. A cylindrical combustion chamber is supplied with an axial jet of methane from one side and air (or pure oxygen) jet from the other side to create a counter flow laminar diffusion flame. A 0.5 mm thick disk, having a 0.5-mm diameter central hole, is installed inside the cylinder perpendicular to its axis. The fuel and oxidant flow rates were kept constant while the distance of the oxidant is changed until a stable flame is established. The distance is then reduced until the flame extincts. The experiment is repeated for different fuel flow rates keeping the oxidant flow rate constant, while recording the flame extinction distance. It was found that the quenching distance, between oxidant nozzle and the disk, is of the order of 1.0 mm when oxygen is the oxidant while for air it is about 15 mm. These distances give an upper limit for the oxidant gap size of the fuel cell, based on safety considerations. Moreover, the measurements show that fuel cells are safer when using air as oxidant rather than pure oxygen. A new computer code is developed capable of simulating flow, heat transfer, and chemical reactions in 2D geometries, similar to the above flammability experiments. The governing laminar equations for momentum, mass and mixture fraction are solved by a numerical iterative algorithm. The computed mixture fraction is used to calculate its dissipation rate. They are then used to access a flamelet library to obtain the local flame properties and/or its possible extinction. This flamelet library is generated separately, based on a 3-step reaction mechanism for CH{sub}4. The computed flammability distances for CH{sub}4-O{sub}2 and CH{sub}4-air flames, are lower than the corresponding measured quenching distances. This is a result of neglecting thermal radiation in the present combustion model.
机译:通过在氧化剂侧的固体电解质中或在燃料电池的固体电解质中或分离板中的可能裂缝泄漏燃料,可以引起不受控制的燃烧。实验设置是设计以模拟上述条件。将圆柱形燃烧室供应从另一侧的一侧和空气(或纯氧)射流的甲烷的轴向射流,以产生计数器流动层状扩散火焰。具有0.5毫米直径的中心孔的厚盘0.5毫米厚盘,垂直于其轴线的圆柱体内。燃料和氧化剂流速保持恒定,而氧化剂的距离改变直至建立稳定的火焰。然后减少距离直到火焰灭绝。对不同的燃料流速重复实验,保持氧化剂流速恒定,同时记录火焰消光距离。发现当氧气是氧化剂时,氧化剂喷嘴和盘之间的淬火距离是1.0mm的氧化剂,而空气是约15mm。这些距离基于安全考虑,这些距离给出了燃料电池的氧化剂间隙尺寸的上限。此外,测量结果表明,当使用空气作为氧化剂而不是纯氧时,燃料电池更安全。开发了一种新的计算机代码,能够在2D几何形状中模拟流动,传热和化学反应,类似于上述可燃性实验。通过数值迭代算法解决了动量,质量和混合物级分的控制层状方程。计算的混合级分用于计算其耗散速率。然后,它们用于访问击败器库以获得局部火焰属性和/或其可能的灭绝。基于CH {SUB} 4的三步反应机制,分别生成该击刀库。 CH {Sub} 4-O {Sub} 2和CH {Sub} 4 - 空气火焰的计算可燃性距离低于相应的测量淬火距离。这是忽略本燃烧模型中的热辐射的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号