首页> 外文会议>International Conference on Environmental Systems >Evaluation of CO2 Adsorber, Sabatier Reactor, and Solid Oxide Stack for Consumable, Propellant, and Power Production - Potential in ISRU Architecture
【24h】

Evaluation of CO2 Adsorber, Sabatier Reactor, and Solid Oxide Stack for Consumable, Propellant, and Power Production - Potential in ISRU Architecture

机译:CO2吸附器,易氧化反应器和固体氧化物叠层的评价,用于消耗品,推进剂和电力生产 - ISRU架构的潜力

获取原文

摘要

The utilization of CO2 and regolith off-gases (e.g., methane and high hydrocarbons) to produce life support consumables, such as O2 and H2O, propellant fuels, and/or power is an important aspect of In-Situ Resource Utilization (ISRU) architecture for future, long duration planetary missions. One potential solution is to capture and use CO2 from the Martian atmosphere and/or hydrocarbons from regolith off-gases to generate the consumables, propellant fuels, and power. One approach is to chemically convert the collected carbon dioxide with H2, obtained from the electrolysis of water, via the Sabatier reaction to produce methane and H2O. Methane can be stored and utilized as propellant while H2O can be either stored or recycled/electrolyzed to produce oxygen and regain the hydrogen atoms. Depending on the applications, O2 can be used to replenish the atmosphere in human-crewed missions or as an oxidant for robotic and return missions. Alternatively, the generated and collected CH4 and O2 can be used as fuels in a solid oxide stack to produce power. Precision Combustion, Inc. (PCI), with support from NASA, has developed a regenerable adsorber technology for capturing CO2 from gaseous atmospheres (for both cabin atmosphere revitalization and ISRU applications) and a compact, efficient Sabatier reactor for converting CO2 to methane and water. Recently, we demonstrated a system concept for an innovative, high power density solid oxide stack for the utilization of methane and other hydrocarbons along with O2 to produce power. The resulting enhanced heat and mass transfer design offers the potential for higher overall efficiency, simplifies the system, and enables further compactness and weight reduction while improving the conditions for long system life. Here, the performance metrics and requirements from each technology will be presented. These include results from performance testing at various operating conditions and durability testing.
机译:CO2和风化层废气(例如,甲烷和高的烃),以产生生命支持消耗品,如O 2和H 2 O,推进剂燃料,和/或功率的利用率是原位资源利用(ISRU)体系结构的一个重要方面对于未来,长期长期行星任务。一个潜在的解决方案是从火星气氛和/或碳氢化合物中捕获和使用来自石油石灰的碳氢化合物,以产生消耗品,推进剂燃料和功率。一种方法是通过易氧化反应将来自水的电解获得的H 2的收集的二氧化碳转化为产生甲烷和H2O。可以将甲烷储存并用作推进剂,而H2O可以储存或再循环/电解以产生氧气并重新获得氢原子。根据应用,O2可用于补充人营业任务中的气氛或作为机器人和返回任务的氧化剂。或者,所产生的和收集的CH4和O 2可以用作固体氧化物堆叠中的燃料以产生功率。 Precision Combustion,Inc.(PCI),支持NASA的支持,开发了一种可再生的吸附技术,用于捕获来自气态气氛的CO2(用于机舱气氛振兴和ISRU应用)以及用于将CO2转换为甲烷和水的紧凑型高效的兔子反应器。最近,我们展示了一种用于创新的高功率密度固体氧化物叠层的系统概念,用于利用甲烷和其他烃以及O2来产生功率。由此产生的增强的热量和传质设计提供了更高的整体效率的潜力,简化了系统,并实现了进一步的紧凑性和减重,同时改善了长系统寿命的条件。这里,将呈现来自每个技术的性能指标和要求。这些包括在各种操作条件下的性能测试和耐用性测试的结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号