首页> 外文会议>Biennial Conference on Mechanical Vibration and Noise >A MULTI-FIELD SPACE-TIME FINITE ELEMENT METHOD FOR STRUCTURAL ACOUSTICS
【24h】

A MULTI-FIELD SPACE-TIME FINITE ELEMENT METHOD FOR STRUCTURAL ACOUSTICS

机译:结构声学的多场时空有限元方法

获取原文

摘要

A Computational Structural Acoustics (CSA) capability for solving scattering, radiation, and other problems related to the acoustics of submerged structures has been developed by employing some of the recent algorithmic trends in Computational Fluid Dynamics (CFD), namely time-discontinuous Galerkin Least-Squares finite element methods. Traditional computational methods toward simulation of acoustic radiation and scattering from submerged elastic bodies have been primarily based on frequency domain formulations. These classical time-harmonic approaches (including boundary element, finite element, and finite difference methods) have been successful for problems involving a limited range of frequencies (narrow band response) and scales (wavelengths) that are large compared to the characteristic dimensions of the elastic structure. Attempts at solving large-scale structural acoustic systems with dimensions that are much larger than the operating wavelengths and which are complex, consisting of many different components with different scales and broadband frequencies, has revealed limitations of many of the classical methods. As a result, there has been renewed interest in new innovative approaches, including time-domain approaches. This paper describes recent advances in the development of a new class of high-order accurate and unconditionally stable space-time methods for structural acoustics which employ finite element discretization of the time domain as well as the usual discretization of the spatial domain. The formulation is based on a space-time variational equation for both the acoustic fluid and elastic structure together with their interaction. Topics to be discussed include the development and implementation of higher-order accurate non-reflecting boundary conditions based on the exact impedance relation through the Dirichlet-to-Neumann (DtN) map, and a multi-field representation for the acoustic fluid based on independent pressure and velocity potential variables. Numerical examples involving radiation and scattering of acoustic waves are presented to illustrate the high-order accuracy achieved by the new methodology for CSA.
机译:通过采用近期计算流体动力学(CFD)中的一些算法趋势来开发了用于解决散射,辐射和与淹没结构的声学相关的其他问题相关的计算结构声学(CSA)能力,即时间不连续的Galerkin最近 - 方格有限元方法。朝向浸没弹性体散射的传统计算方法主要基于频域制剂。这些古典时间谐波方法(包括边界元件,有限元和有限差分方法)已经成功地成功用于涉及有限范围的频率(窄带响应)和与尺度(波长)相比的尺度(窄带响应)和尺度(波长)相比的特征尺寸相比弹性结构。尝试求解具有远大于工作波长的大规模结构声学系统,并且复杂,包括许多具有不同尺度和宽带频率的不同组件,揭示了许多经典方法的局限性。因此,对新的创新方法进行了更新的兴趣,包括时间域方法。本文介绍了一类新的用于其采用时域的有限元离散以及空间域中的通常离散结构声学高阶准确和无条件稳定的空间 - 时间的方法的发展的最新进展。该配方基于用于声学流体和弹性结构的时空变化方程以及它们的相互作用。要讨论的主题包括基于通过Dirichlet-Neumann(DTN)图的精确阻抗关系以及基于独立的声学流体的多场表示的精确阻抗关系的更高阶精确非反映边界条件的开发和实现压力和速度潜在变量。介绍了涉及声波辐射和散射的数值示例,以说明通过CSA的新方法实现的高阶精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号