首页> 外文会议>International Bhurban Conference on Applied Sciences and Technologies >Energy absorption and compression behaviour of polymeric 3D printed lattice structures - experimental and numerical study
【24h】

Energy absorption and compression behaviour of polymeric 3D printed lattice structures - experimental and numerical study

机译:聚合物3D印刷晶格结构的能量吸收和压缩行为 - 实验性和数值研究

获取原文

摘要

Worldwide advance technologies, innovations and development in field of design and manufacturing have expended functionality of structures at small scale to fulfil requirement of behavior of material at micro level. Purpose behind this scope is to produce light weight structure by utilizing minimum material, cost and achieving maximum mechanical behavior of material. In order to achieve this approach, combination of experimental and numerical set up developed to focus on the effect of additive manufactured polymeric micro-lattice structures geometry over energy absorption capability, deformation and compression behavior. In this work, the energy absorption characteristics of three different polymeric lattice topologies i.e.uniform body centered cubic (UBCC), uniform body centered cubic reinforced in z- axis (UBCCz), and graded body centered cubic (GBCC) were considered, manufactured by using digit light processing (DLP) 3D printing technique. The quasistatic compression test was performed to study energy absorption capability, compression behavior, failure modes and relation between load and displacement. Although dimensions and mass of all polymeric lattice blocks were same but effect of cell architecture on mechanical behavior of lattice was significant. The mechanical behavior and deformationof GBCC is different from uniform counterparts. Densification rate in upper layers of GBCC having smaller diameter occurred earlier than next lower layer having larger diameter. Energy absorption capability in UBCCz is muchhigher than UBCC and GBCC. Large displacement deformation occurred in UBCC due to cell space. In UBCCz additional strut as reinforcement in z-direction acted as stress bearing member and improved its stress bearing capability. Moreover, higher elastic modulus and stiffnessin UBCCzis observed than other two cell topologies. In the end, finite element simulations were carried out using LS DYNA-3D to validate the result and comparing it with experimental data.
机译:在设计和制造领域的全球推进技术,创新和开发,小规模的结构功能消耗了结构的功能,以满足微量水平的材料行为的要求。此范围背后的目的是通过利用最小材料,成本和实现材料的最大机械行为来产生轻量级结构。为了达到这种方法,实验和数值设定的组合开发用于专注于添加剂制造的聚合物微晶格结构几何形状对能量吸收能力,变形和压缩行为的影响。在这项工作中,考虑了三种不同的聚合物晶格拓扑的能量吸收特性,Ieunifice身体中心的立方(UBCC),均匀的主体中心在z轴(Ubccz)中加强,并通过使用制造了梯度体为中心的立方(GBCC)和分级体为中心数字光处理(DLP)3D打印技术。进行Quasistatic压缩测试以研究能量吸收能力,压缩行为,故障模式和负载和位移之间的关系。尽管所有聚合物晶格嵌段的尺寸和质量相同,但细胞架构对晶格的力学行为的影响是显着的。 GBCC的机械行为和变形不同于均匀的对应物。高直径的GBCC的上层的致密化速率比下层发生较大的下层。 UBCCZ中的能量吸收能力比UBCC和GBCC高。由于细胞空间,UBCC发生了大的位移变形。在UBCCZ附加支柱中,作为Z方向的加强作用为应力承载构件并改善其应力轴承能力。此外,比其他两个细胞拓扑观察到更高的弹性模量和刚度Ubcczis。最后,使用LS Dyna-3D进行有限元模拟,以验证结果并将其与实验数据进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号