首页> 外文会议>International Bhurban Conference on Applied Sciences and Technology >Experimental and numerical investigation of 3D printed micro-lattice structures for high energy absorption capabilities
【24h】

Experimental and numerical investigation of 3D printed micro-lattice structures for high energy absorption capabilities

机译:具有高能量吸收能力的3D打印微晶格结构的实验和数值研究

获取原文

摘要

Micro-lattice structures produced through additive manufacturing techniquesare offers exceptional combination of physical attributes such as light-weight, high compressive strength, impact resistance and energy absorption. The properties of these structures could be tailored by altering their shape. The advancement of additive manufacturing has simplified the development of micro-lattice structures and allowed to create more complex design. This paper investigates the effect of geometric change in the micro-lattice structure on the specific energy absorption. Experimental and numerical work has been performed on a body-centered-cubic (BCC) architecture. 3D continuum elements have been used to model the structure under quasi-steady compressive loads. To validate the numerical model, finite element results were compared with the experimental data. After achieving a satisfied comparison, geometric parameters study was conducted numerically to obtain the micro-lattice structure that exhibits high energy absorption characteristics. Five series of BCC lattice-structured models varying the number of unit cells and the strut diameter were generated, keeping the total mass constant. The results shows that, for same structural displacement, the structure with more unit cells collapse to solid structure whereas BCC structure with less number of unit cells has still space and could be deformed to larger displacement before reaching the solid structure state. However, this does not ascertain that larger displacement allows more energy to be absorbed. Reducing the unit cells increases the energy absorption attribute. The study shows that, for high energy absorption, an optimum diameter of the strand and number of unit cells exists.
机译:通过增材制造技术生产的微晶格结构可将各种物理属性(如轻质,高抗压强度,抗冲击性和能量吸收性)完美地结合在一起。这些结构的性质可以通过改变其形状来定制。增材制造的进步简化了微晶格结构的开发,并允许创建更复杂的设计。本文研究了微晶格结构中几何变化对比能量吸收的影响。实验和数值工作已在以体心立方(BCC)的体系结构上进行。 3D连续体元素已用于对准稳态压缩载荷下的结构进行建模。为了验证数值模型,将有限元结果与实验数据进行了比较。在获得满意的比较之后,对几何参数进行了数值研究,以获得具有高能量吸收特性的微晶格结构。生成了五组BCC晶格结构模型,这些模型改变了晶胞的数量和支杆直径,从而使总质量保持恒定。结果表明,对于相同的结构位移,具有更多晶胞的结构会塌陷为固态结构,而具有较少晶胞数量的BCC结构仍具有空间,并且在达到固态结构状态之前可能会变形为更大的位移。然而,这不能确定更大的位移允许吸收更多的能量。减少单位晶胞会增加能量吸收属性。研究表明,对于高能量吸收而言,存在最佳的股线直径和单位晶胞数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号