首页> 外文会议>International Conference on Nuclear Engineering >QUALIFICATION OF REACTOR PHYSICS TOOLSET FOR A THORIUM-FUELLED CANDU REACTOR
【24h】

QUALIFICATION OF REACTOR PHYSICS TOOLSET FOR A THORIUM-FUELLED CANDU REACTOR

机译:钍燃料蜡烛反应堆反应堆物理工具集的资格

获取原文

摘要

AECL has developed enhanced versions of the reactor physics computer codes for analysis of CANDU reactors and the ACR-1000. The central codes that comprise the analysis toolset are WIMS-AECL (a lattice code), RFSP (a core code) and MCNP5 (a Monte Carlo code). The toolset, with ENDF/B-VI nuclear data, has been validated for application to the ACR-1000 design. In addition to comparisons of code predictions against relevant experiments conducted in AECL's ZED-2 critical facility, advanced methods based on cross-section sensitivity/uncertainty (S/U) analysis were used to extend the results of bias and uncertainty in reactivity coefficients, derived from analysis of ZED-2 tests, to the ACR-1000 reactor. The validation of this toolset with ENDF/B-VII nuclear data is proposed for application to analysis of a Thorium-fuelled CANDU Reactor (TCR). The TCR is based on the Enhanced CANDU 6 (EC6) reactor [1] and would operate with a fuel design that incorporates both low-enriched uranium (LEU) oxide and thorium oxide fuel elements in the same fuel bundle to achieve enhanced fuel and core performance with thorium fuel. For the initial TCR toolset qualification, important reactor physics phenomena would be validated using several relevant ZED-2 experiments performed in the past. Results from experiments with a variety of oxide fuels are available, including plutonium/thorium (Pu/Th), ~(233)U/Th, ~(235)U/Th, LEU and CANDU-MOX (containing a mixture of plutonium, uranium and dysprosium to simulate the reactor physics affects of fuel burnup). Taken together along with other relevant experimental data, these experiments would be expected to address the important isotopes and many phenomena for the TCR and to enable the validation of the reactor physics toolset for this design. Additional confirmatory experiments would reduce uncertainties. This paper describes the qualification process, including validation, which is proposed to support the use of the reactor physics toolset for the TCR.
机译:AECL开发了用于分析CANDU反应器和ACR-1000的反应器物理计算机代码的增强版本。包括分析工具集的中心代码是WiMS-AECL(晶格代码),RFSP(核心代码)和MCNP5(蒙特卡罗代码)。具有ENDF / B-VI核数据的工具集已被验证以应用于ACR-1000设计。除了对AECL ZED-2关键设施中进行的相关实验的守则预测的比较外,基于横截面敏感性/不确定性(S / U)分析的先进方法用于扩展反应性系数的偏置和不确定性的结果从分析ZED-2测试,到ACR-1000反应器。提出了具有ENDF / B-VII核数据的该工具集的验证,以应用于分析钍燃料蜡烛反应器(TCR)。 TCR基于增强的蜡烛6(EC6)反应器[1],并将用燃料设计操作,该燃料设计将相同燃料束中的低富集的铀(Leu)和氧化钍燃料元件掺入,以实现增强的燃料和芯性能与钍燃料。对于初始TCR工具集合,使用过去进行的几个相关的ZED-2实验验证重要的反应器物理现象。使用各种氧化物燃料的实验结果,包括钚/钍(PU / TH),〜(233)U / TH,〜(235)U / TH,Leu和Candu-Mox(含有钚的混合物,铀和镝模拟燃料燃烧的反应器物理影响)。随着其他相关实验数据以及这些实验将与其他相关的实验一起解决重要同位素和TCR的许多现象,并能够验证这种设计的反应器物理工具集。额外的确认实验将减少不确定性。本文介绍了资格处理,包括验证,建议支持使用TCR的反应器物理工具集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号