首页> 外文会议>International Conference on Nuclear Engineering >USING PIPE WHIP ANALYSIS VIA THE FINITE ELEMENT METHOD TO UNDERPIN THE DELINEATION BETWEEN HIGH AND MODERATE ENERGY LINES
【24h】

USING PIPE WHIP ANALYSIS VIA THE FINITE ELEMENT METHOD TO UNDERPIN THE DELINEATION BETWEEN HIGH AND MODERATE ENERGY LINES

机译:通过通过有限元方法使用管鞭分析来支撑高中能量线之间的描绘

获取原文

摘要

When a pressurised pipe in a reactor coolant system breaks, it results in hydraulic loads on the reactor containment system and escaping fluid exerts a thrust force on the pipe. The double-ended guillotine break (DEGB) is generally the most onerous loss of coolant accident (LOCA) in design of a reactor coolant system [1]. In addition to the hydraulic loads, the continuing thrust force on the broken end of the pipe generates a rapidly accelerating rotational displacement of the pipe section on the break side of the plastic hinge, the phenomenon called pipe whip. The whipping pipe has the potential to damage objects within the hazard zone therefore must be assessed. Currently a 20bar threshold is used in nuclear power plant (NPP) design of light water reactors (LWRs) to delineate high energy lines (HEL) and moderate energy lines (MEL). The threshold is used as a process to establish the requirement for additional pipe whip assessments to be performed as part of HEL guillotine break analysis. It is currently argued that no such studies are required for MEL. However the basis of using the 20bar threshold for not carrying out pipe whip assessment of MELs is not well understood. The work presented here provides details of the finite element (FE) analyses undertaken to substantiate the 20 bar threshold used for the differentiation of HEL and MEL. Using the FE analysis method, a range of pipe characteristics, and pressures in the range of 10-50bar have been studied to determine whether a plastic hinge will occur, and whether pipe whip effects will be seen for that case. The FE results have also been used to assess the equivalent plastic strain criteria generally used to define the formation of a plastic hinge and initiation of pipe whip.
机译:当反应堆冷却剂系统中的加压管时,它导致反应器容纳系统上的液压载荷,并且逸出的流体对管子上的推力施加推力。双端断头台断裂(DEGB)通常是反应器冷却剂系统设计中最繁重的冷却剂事故(LOCA)的损失[1]。除了液压载荷之外,管道断裂端上的连续推力会产生塑料铰链的断裂侧的快速加速旋转位移,该现象称为管鞭。因此,必须评估次脉冲管的可能性有可能损坏危险区内的物体。目前,在核电站(NPP)设计的光水反应器(LWRS)设计中使用20bar阈值,以描绘高能线(HEL)和中等能量线(MEL)。阈值用作建立作为HE1断裂液中断分析的一部分进行额外管鞭评估的要求的过程。目前认为MEL需要这些研究。然而,使用20bar阈值的基础对于不进行摩尔斯的管鞭评估的阈值并不了解。这里提出的工作提供了有限元(Fe)分析的细节,以证实用于分化HEL和MEL的20巴阈值。使用Fe分析方法,研究了一系列管道特性和10-50bar范围内的压力,以确定是否会发生塑料铰链,以及是否会看到管擦效应。 Fe结果也被用来评估通常用于定义塑料铰链的形成和管鞭引发的等效塑料应变标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号