首页> 外文会议>ASME Fluids Engineering Division Meeting >TWO-WAY COUPLED PARTICLE-LADEN MIXING LAYER PART 1. LINEAR INSTABILITY
【24h】

TWO-WAY COUPLED PARTICLE-LADEN MIXING LAYER PART 1. LINEAR INSTABILITY

机译:双向耦合粒子升起的混合层部分1.线性不稳定性

获取原文
获取外文期刊封面目录资料

摘要

The two-way coupled particle-laden mixing layer is studied numerically and theoretically in order to understand how the addition of solid particles affects the stability of the gas flow. Numerical simulations are carried out to obtain results equivalent to solving the Orr-Sommerfeld equation of dusty gas mixing layer first derived by Saffman (1962). The growth rate of a viscous particle-laden mixing layer depends on the wavenumber, flow Reynolds number, Stokes number, and bulk particulatemass loading. Two asymptotic relations proposed by Saffman (1962) have been confirmed for the first time by the numerical simulations. While the stabilizing effect of particles on the gas flow at large Stokes number is well recognized in other related studies, a destabilizing influence at small Stokes number is observed at finite flow Reynolds number. The fact that the addition of particles can destabilize the gas flow in the absence of gravity has been shown to follow the original speculation of Saffman. Physically the increase of effective inertia of the fluid-particle mixture causes a destabilization effect while the enhanced viscous dissipation around particles gives a stabilization effect. These qualitatively different effects have been shown to be directly related to the direction of interphase energy. Results at arbitrary mass loading, Stokes number, and wavenumber show that for a given mass loading and wavenumber, there is an intermediate Stokes number which corresponds to a maximum flow stability. We have shown that this Stokes number is on the order of one, and depends on the wavenumber. An approximate model for predicting the growth rate in a viscous, particle-laden gas mixing layer is proposed and compared with the simulation results. The efficient damping by the particulate phase at the intermediate Stokes number has an interesting implication on the enhanced dispersion discovered previously under one-way coupling.
机译:双向耦合粒子升起的混合层在数值和理论上进行了研究,以便理解固体颗粒的添加如何影响气体流动的稳定性。进行了数值模拟,以获得等同于求解Saffman(1962)首先衍生的灰尘气体混合层的ORR-Sommerfeld方程的结果。粘性粒子混合层的生长速率取决于波数,流动雷诺数,斯托克斯数和散装综合催化负载。 Saffman(1962)提出的两个渐近关系已通过数值模拟首次确认。虽然在其他相关研究中识别出大型斯托克斯数的颗粒对气流对气流的稳定效果,但在有限流雷诺数观察到小斯托克斯号的稳定影响。在没有重力的情况下,添加颗粒可以使颗粒的添加能够遵循萨夫曼的原始猜测来稳定气体流动的事实。物理上,流体颗粒混合物的有效惯性的增加导致稳定的效果,而粒子周围的增强粘性耗散给出稳定效果。这些定性不同的效果已被证明与相互能量的方向直接相关。结果在任意质量加载,Stokes数和波数表示,对于给定的批量装载和波数,存在对应于最大流量稳定性的中间斯托克斯号。我们已经表明,这个Stokes号码是约一,并且取决于波数。提出了一种用于预测粘性粒子载气混合层中生长速率的近似模型,并与模拟结果进行比较。中间斯托克斯数在中间斯托克斯数处的颗粒相的有效阻尼对先前在单向耦合下发现的增强分散体具有有趣的含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号