首页> 外文会议>ASME Fluids Engineering Division Meeting;ASME Heat Transfer Conference;International Conference on Nanochannels, Microchannels and Minichannels >USE OF GENETIC ALGORITHMS AND MACHINE LEARNING TO EXPLORE PARAMETRIC TRENDS IN NUCLEATE BOILING HEAT TRANSFER DATA
【24h】

USE OF GENETIC ALGORITHMS AND MACHINE LEARNING TO EXPLORE PARAMETRIC TRENDS IN NUCLEATE BOILING HEAT TRANSFER DATA

机译:使用遗传算法和机器学习探讨核心沸腾传热数据的参数趋势

获取原文

摘要

Exploring parametric effects in pool boiling is particularly challenging because the dependence of the resulting surface heat flux on many parameters is non-linear, and the mechanisms can interact in complex ways. Historically, parametric effects in nucleate boiling processes have most often been deduced by fitting relations obtained from physical models to experimental data, or looking for correlated trends in non-dimensionalized data. Using such approaches, observed trends are often influenced by the framing of the analysis that results from the modeling or the collection of dimensionless variables used. Machine learning strategies can be attractive alternatives because they can be constructed either to minimize biases or to emphasize specific biases that reflect knowledge of the physics of the system. The investigation summarized here explored the use of machine learning methods as a tool for determining parametric trends in boiling heat transfer data, and as a means for developing methods to predict boiling heat transfer. Results are presented that demonstrate how genetic algorithms and other machine learning tools can be used to extract heat flux dependencies on system parameters. A key element of the machine learning analysis process is preparation of the data used. Use of raw data and use of dimensionless rescaled data are explored, and the advantages and disadvantages of each are assessed. Data for nucleate boiling of a binary mixture are analyzed to determine the heat flux dependence on wall superheat, gravity. Marangoni effects and pressure. The results provide new insight into how gravity and Marangoni effects interact in boiling processes of this type. The results also demonstrate how machine learning tools can clarify how different mechanisms interact in the boiling process, as well as directly providing the ability to predict heat transfer performance for design of heat transfer devices that involve nucleate boiling. Potential use of machine learning tools on big data collections for nucleate boiling processes to more broadly assess parametric effects is also discussed.
机译:探索池中的参数效果特别具有挑战性,因为所得表面热通量在许多参数上的依赖性是非线性的,并且该机构可以以复杂的方式交互。从历史上看,通过将从物理模型与实验数据所获得的关系拟合,或者寻找非维度数据的相关趋势,核心沸腾过程中的参数效应最多常用。使用这种方法,观察到的趋势通常受到分析的框架的影响,从模型或使用的无量变量的集合产生。机器学习策略可以是有吸引力的替代方案,因为它们可以构建以最小化偏差或强调反映系统物理知识的具体偏差。概述的调查探讨了使用机器学习方法作为用于确定沸腾传热数据中的参数趋势的工具,以及用于制定预测沸腾热传递的方法的手段。提出了结果,展示了遗传算法和其他机器学习工具如何用于提取系统参数的热通量依赖性。机器学习分析过程的一个关键元素是准备使用的数据。探索了原始数据和使用无量值重新定位数据,并评估各自的优点和缺点。分析了二元混合物的核沸点的数据以确定壁过热,重力的热通量依赖性。 Marangoni影响和压力。结果提供了对重力和Marangoni效应在这种类型的沸腾过程中相互作用的新洞察。结果还证明了机器学习工具如何阐明不同机制在沸腾过程中的相互作用,以及直接提供预测传热性能的能力,用于设计涉及核心沸腾的传热装置。还讨论了在大数据收集到更广泛地评估参数效果的大数据收集中的潜在使用机器学习工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号