首页> 外文会议>IEEE Sensors Conference >Effect of Surface Microstructure on the Long-term Anti-bacterial Performance for Slippery Liquid Infused Porous Surfaces
【24h】

Effect of Surface Microstructure on the Long-term Anti-bacterial Performance for Slippery Liquid Infused Porous Surfaces

机译:表面微观结构对滑动液体注入多孔表面的长期抗菌性能的影响

获取原文

摘要

In the development of biocompatible materials for biomedical applications and biosensors the foreign body response is an important issue [1]. The adhesion of microorganisms on the biosensor surface affects the performance of the biosensor while causing organism infection. The concept of Slippery Liquid Infused Porous Surfaces (SLIPS) provides a new strategy for anti-bacterial adhesion on the surface of biosensors [2]. However, there are still some shortcomings in practical uses, such as the loss of lubricant significantly restricts the long-term slippery performance [3]. Thus, how to lock the lubricant on the surface is a key bottleneck to be solved, and the effect of surface morphology has played critical roles. In this paper, we microfabricated well-controlled microcavity with different profiles (vertical or inclined wall), to investigate the long-term anti-biofouling effect of SLIPS. We explored the microstructure geometry in two aspects: the aspect ratio and the slope angle which are relevant with the Laplace pressure and the oil contact area thus leading to different oil-locking ability. High aspect and incline slope are demonstrated with better oil-locking ability as well as significantly less bacterial adhesion. Under the flow environment rotating at 1000 rpm, the coverage of bacteria adhered to the SLIPS with 20° inclined microcavities is only about 30% of the SLIPS with vertical microcavities, and 4 times aspect ratio brings about 3 times antibacterial effect. On basis of these findings, we propose SLIPS microstructure features with better oil-locking ability and long-term anti-bacterial performance, which provide a theoretical basis for the practical application of SLIPS, such as, medical implanted devices, food package etc.
机译:在生物医学应用和生物传感器的生物相容性材料的发展中,异物反应是一个重要问题[1]。微生物对生物传感器表面的粘附性影响生物传感器的性能,同时导致生物体感染。光滑液体注入多孔表面(Slips)的概念提供了生物传感器表面上的抗菌粘附的新策略[2]。然而,实际用途仍然存在一些缺点,例如润滑剂的损失显着限制了长期滑移的性能[3]。因此,如何将润滑剂锁定在表面上是要解决的关键瓶颈,并且表面形态的效果起到了关键作用。在本文中,我们用不同的曲线(垂直或倾斜墙)微制造良好控制的微腔,以研究滑动的长期抗生物磁化效果。我们探讨了两个方面的微观结构几何形状:与拉普拉斯压力和油接触区域相关的纵横比和倾斜角导致不同的储油能力。通过更好的油锁定能力和细菌粘合性显着更少,证明了高方面和倾斜斜率。在旋转1000rpm的流动环境下,粘附到20°倾斜微腔的滑动的细菌的覆盖率仅为垂直微腔的滑石的约30%,并且4次纵横比带来约3倍的抗菌效果。在这些发现的基础上,我们提出了具有更好的油锁合能和长期抗菌性能的微观结构特征,为滑动的实际应用提供了理论依据,例如医疗植入装置,食品包等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号