首页> 外文会议>Conference on Bearing Steel Technologies >Testing to Reveal Tribology Mechanisms for Advancing Bearing Steels
【24h】

Testing to Reveal Tribology Mechanisms for Advancing Bearing Steels

机译:测试揭示摩擦学机制推进轴承钢

获取原文

摘要

The risk of introducing advanced bearing steels can be reduced by Technology Readiness Level (TRL) testing methods that reveal surface and subsurface tribology mechanisms. Abrasive wear screening tests (TRL 3) show a correlation with hardness for AMS 6491 (M50), AMS 6278 (M50 NiL), and three versions of a high-nitrogen stainless steel AMS 6898 (N360). A TRL 3 load capacity test method for oil qualification reveals lubrication and failure mechanisms for both oil formulations and bearing steels. Load capacity tests with legacy bearing steels AMS 6491 (M50) and AMS 6278 (M50 NiL) show superior performance over newer bearing and gear steels AMS 6509 (Ferrium C64), AMS 5930 (Pyrowear 675), and AMS 5898 (N360). Surface analysis and traction behavior are used to reveal the accommodation of shear phenomenon on an asperity scale. M50 NiL shows high traction and good antiwear (AW) behavior where shear is accommodated at the surface film, without much asperity shear or wear. The high-nitrogen stainless steels, or any material with a stainless oxide layer or a soft phase with limited shear resistance, tend to have low traction and poor AW attributes. AW and extreme pressure (EP) attributes are clearly revealed from tests with various bearing steels, as well as oil formulations. A third attribute, run-in polishing (RIP), is introduced to characterize interactions resulting in polishing of roughness features. Asperity polishing extends micro-elastohydrodynamic mechanisms and lowers the traction coefficient. Bearing steel and oil formulation attributes for AW, EP, and RIP can easily be at odds with surface and subsurface initiated fatigue, particularly for long-term operation. This requires extended TRL 3 testing for these attributes, along with TRL 4 simulation testing for component tribology design for service. TRL testing and analysis provide the methodology to design and apply component contact interfaces with greatly enhanced innovation and reduced risk.
机译:通过揭示表面和地下摩擦学机制的技术准备水平(TRL)测试方法,可以减少引入先进轴承钢的风险。磨料磨损筛选试验(TRL 3)显示与AMS 6491(M50),AMS 6278(M50)的硬度的相关性,以及高氮不锈钢AMS 6898(N360)的三种版本。用于石油资质的TRL 3负载能力测试方法显示出油制剂和轴承钢的润滑和失效机制。带有旧轴承钢AMS 6091(M50)和AMS 6278(M50)的负载能力测试表现出较高的轴承和齿轮钢AMS 6509(Fichrium C64),AMS 5930(Pyrowear 675)和AMS 5898(N360)的卓越性能。表面分析和牵引行为用于揭示剪切现象在粗糙度尺度上的容纳。 M50毫米显示高牵引力和良好的抗磨(AW)行为,其中剪切容纳在表面膜上,而无需多大剪切或磨损。高氮不锈钢或具有不锈钢氧化物层的任何材料或具有有限抗剪切抗性的软相,往往具有低牵引力和较差的AW属性。 AW和极压(EP)属性清楚地揭示了各种轴承钢的测试,以及油制剂。引入第三属性,rin-in抛光(RIP),以表征相互作用,从而产生粗糙度抛光。粗糙抛光延伸微弹性流动动力学机制并降低牵引系数。 AW,EP和RIP的轴承钢和油制剂属性可以很容易地与表面和地下发起的疲劳,特别是对于长期操作。这需要扩展TRL 3测试这些属性,以及用于组件摩擦学设计的TRL 4仿真测试。 TRL测试和分析提供了设计和应用组件联系界面的方法,大大提高了创新和降低风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号