首页> 外文会议>Conference on Interferometry >Subaperture stitching interferometry for testing mild aspheres
【24h】

Subaperture stitching interferometry for testing mild aspheres

机译:用于检测轻度非球面的亚峰缝合干涉测量法

获取原文

摘要

Interferometric tests of aspheres have traditionally relied on so-called "null correctors". These usually require significant time and expense to design and fabricate, and are specific to a particular asphere prescription. What's more, they are tedious to align and calibrate. Aspheres can also be tested without null correction (using a spherical wavefront), but such capability is extremely limited. A typical interferometer can acquire only a few micrometers of fourth-order aspheric departure due to high-density interference fringes. Furthermore, standard software packages do not compensate for the impact upon a non-null measurement of (ⅰ) the part's aspheric shape or (ⅱ) the interferometer's optical aberrations. While fringe density and asphere compensation severely limit the practical utility of a non-null asphere measurement, subaperture stitching can directly address these issues. In 2004, QED Technologies introduced the Subaperture Stitching Interferometer (SSI~®) to automatically stitch spherical surfaces (including hemispheres). The system also boosts accuracy with in-line calibration of systematic errors. We have recently added aspheric capability, extending non-null aspheric test capability by an order of magnitude or more. As demonstrated in the past on annular zones of nearly nulled data, subaperture stitching can extend the testable aspheric departure. We present a more generally applicable and robust method of stitching non-null aspheric phase measurements. By exploiting novel compensation schemes and in-line system error calibration, our subaperture stitching system can provide significantly better accuracy and increased testable aspheric departure over an unstitched non-null test. Examples of stitched non-null tests are analyzed in this paper, and cross-tested against corresponding null tests.
机译:非球面的干涉测量传统上依赖于所谓的“空校正”。这些通常需要大量的时间和费用来设计和制造,并且特定于特定的间谍处方。更重要的是,对齐和校准它们是乏味的。也可以在没有空校正(使用球面波前)的情况下进行测试,但是这种能力非常有限。典型的干涉仪可以由于高密度干涉条纹而仅获取几微米的四阶非球面偏离。此外,标准软件包不会补偿对(Ⅰ)部分的非零点测量的影响(Ⅰ)部分的非球面形状或(Ⅱ)的干涉仪的光学像差。虽然条纹密度和间谍补偿严重限制了非空沥青测量的实用效用,但亚峰缝合可以直接解决这些问题。 2004年,QED技术引入了亚峰缝合干涉仪(SSI〜®),以自动缝合球形表面(包括半球)。该系统还提高了系统错误的线路校准的精度。我们最近增加了非球面能力,按幅度或更多级以非空非球面测试能力延伸。如过去在几乎无效数据的环形区域上所示,亚曲线缝合可以延长可测试的非球面脱落。我们提出了一种更普遍适用和坚固的缝合非空非球面相测量方法。通过利用新的补偿方案和在线系统误差校准,我们的子射流缝合系统可以在未缝合的非空测试中提供明显更好的准确性和增加的可测试非球面偏离。在本文中分析缝合的非空测试的实例,并与相应的空测试交叉测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号