首页> 外文会议>Conference on Physical Chemistry of Semiconductor Materials and Interfaces >Quantitative electrochemical control over optical gain in colloidal quantum-dot and quantum-well solids
【24h】

Quantitative electrochemical control over optical gain in colloidal quantum-dot and quantum-well solids

机译:胶体量子点和量子孔固体中光学增益的定量电化学控制

获取原文

摘要

Solution processed quantum dot (QD) lasers are one of the holy-grails of nanoscience. They are not yet commercialized because the lasing threshold is too high: one needs > 1 exciton per QD, which is hard to achieve due to fast non-radiative Auger recombination. The threshold can however be reduced by electronic doping of the QDs, which decreases the absorption near the band-edge, such that the stimulated emission (SE) can easily outcompete absorption. Here, we show that by electrochemically doping films of CdSe/CdS/ZnS QDs we achieve quantitative control over the gain threshold. We obtain stable and reversible doping more than two electrons per QD. We quantify the gain threshold and the charge carrier dynamics using ultrafast spectroelectrochemistry and achieve quantitative agreement between experiments and theory, including a vanishingly low gain threshold for doubly doped QDs. Over a range of wavelengths with appreciable gain coefficients, the gain thresholds reach record-low values of ~105 excitons per QD. These results demonstrate an unprecedented level of control over the gain threshold in doped QD solids, paving the way for the creation of cheap, solution-processable low-threshold QD-lasers.
机译:溶液加工量子点(QD)激光器是纳米科学的神圣制剂之一。它们尚未商业化,因为激光阈值太高:每个QD需要> 1个激子,由于快速的非辐射螺旋形重组,这很难实现。然而,通过QD的电子掺杂可以减少阈值,这降低了带边缘附近的吸收,使得刺激的发射(SE)可以容易地实现吸收。这里,我们表明,通过电化学掺杂CDSE / CDS / ZnS QDS的薄膜,我们可以通过增益阈值实现定量控制。我们获得稳定且可逆掺杂超过每QD的两个以上的电子。我们使用超频谱电化学法量化增益阈值和电荷载体动态,实现实验与理论之间的定量协议,包括逐渐低增益阈值,用于双掺杂的QD。在具有可观增益系数的一系列波长范围内,增益阈值达到每QD的〜105激子的记录低值。这些结果表明,在掺杂QD固体中的增益阈值下,展示了前所未有的控制水平,为廉价,解决方案可加工的低阈值QD-Lasers铺平了途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号