首页> 外文会议>31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 10-12, 1995/San Diego, CA >A Comprehensive Analysis of Combustion Instabilities of Homogeneous Propellants in a Rocket Motor
【24h】

A Comprehensive Analysis of Combustion Instabilities of Homogeneous Propellants in a Rocket Motor

机译:火箭发动机均质推进剂燃烧不稳定性的综合分析

获取原文

摘要

A comprehensive numerical analysis has been conduced to study the interactions between acoustic oscillations and combustion of a double-base homogeneous propellant in a rocket motor. The formulation treats the complete conservation equations and accounts for finite-rate chemical kinetics in the gas phase and subsurface reactions. 1) Turbulence closure is achieved by means of a well-calibrated two-layer model taking into account the effect of propellant surface transportation. The governing equations and associated boundary conditions are solved numerically using a fully coupled implicit scheme based on a dual time-stepping integration algorithm. Results of steady-state calculations indicate that the onset of turbulence occurs in the middle of the combustion chamber and substantially modifies combustion wave structure in the downstream region. 2) Turbulence may penetrate into the primary flame zone and consequently increase the propellant burning rate, a phenomenon commonly referred to as erosive burning. Interactions between acoustic waves and propellant combustion are studied by imposing periodic pressure oscillations at the chamber exit. The oscillatory flow characteristics are significantly altered by the presence of turbulence due to enhanced momentum and energy transport in the gas phase. The large-amplitude fluctuation of heat release observed in the secondary flame zone for the laminar flow is smeared out by turbulent motions. The primary flame zone plays a more important role in determining motor stability characteristics in the turbulent flow region based on Rayleigh's criterion. In the condensed phase, a large temperature fluctuation and a deep penetration of the thermal wave take place in the downstream region, leading to a very large burning rate fluctuation.
机译:已经进行了全面的数值分析,以研究声波振荡与火箭发动机中双基均质推进剂燃烧之间的相互作用。该公式处理了完整的守恒方程,并说明了气相和地下反应中的有限速率化学动力学。 1)考虑到推进剂表面运输的影响,通过精心校准的两层模型来实现湍流闭合。使用基于双重时间步长积分算法的完全耦合隐式方案,对控制方程和相关的边界条件进行了数值求解。稳态计算的结果表明,湍流的发作发生在燃烧室的中部,并在很大程度上改变了下游区域的燃烧波结构。 2)湍流可能会渗透到主要火焰区域,从而提高推进剂的燃烧速率,这种现象通常称为侵蚀燃烧。通过在燃烧室出口施加周期性的压力振荡来研究声波与推进剂燃烧之间的相互作用。由于在气相中动量和能量传输的增强,湍流的存在极大地改变了振荡流动特性。在层流的次级火焰区域中观察到的放热的大幅度波动被湍流抹去了。初级火焰区在基于瑞利准则确定湍流区域中的电机稳定性特性中起着更重要的作用。在冷凝阶段,在下游区域发生大的温度波动和热波的深穿透,从而导致非常大的燃烧速率波动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号