【24h】

Towards a Deep submicron CMOS image sensor on a standard FDSOI process

机译:在标准FDSOI工艺上实现深亚微米CMOS图像传感器

获取原文

摘要

Lab-on-chip is a very promising point-of-care technology, where the specimen is placed directly on a CMOSchip for imaging without the use of any labels or chemicals and with no intervening optical components.However, lab-on-chip technologies developed so far have been limited by the existing pixel size of CMOS imagesensors. To be able to accurately resolve small biological samples, the sensor pixel size must be less than thesize of the object under examination. For example, bacteria range from 500nm to 5μm and viruses from 30nm to300nm and thus require image sensors with nanoscale dimensions. However, reducing the size of an image sensoris challenging. Light sensitivity greatly reduces at and below the optical diffraction limit due to increasinglypoorer coupling. In addition, CMOS image sensors typically use a refractive microlens that will not scale dueto diffraction limits below around 1.4 μm. Further, conventional colour filters are made of absorptive dyes orpigments that do not work at nanometer thicknesses.A promising alternative approach to break this size barrier involves the use of nanoscale apertures in metalfilms to produce localized plasmon resonances. For example, investigated strategies for addressing the fabricationchallenges in submicron RGB plasmonic pixels and demonstrated successfully working pixels at 1.4 μm. Veryhigh transmission rates of up to 90% have been reported from an array of annular apertures based on localizedsurface plasmons. Our work is exploring a path to nanophotonic pixel technology in which pixels will be madeup of plasmonic pixels with one single 40-60 nm double coaxial hole integrated onto submicron CMOS pixels of120nm. As the pitch of the nanophotonic pixel array is ultimately set by the CMOS pixel pitch, this paperwill focus on the design considerations limiting this geometry.CMOS image sensors offer low cost, low power and a potentially high level of integration. In this context,CMOS sensors almost universally use a pinned photodiode technique, first developed over 20 years ago, due toits inherently low noise, high quantum efficiency and low dark current. This is typically combined with anctive pixel sensor" (i.e., per-pixel voltage follower) circuit and back-side illumination (with substrate thinning)for greatly improved performance. A major constraint to down-scaling the photodiode in a CMOS sensor isthat a reasonable image quality requires in the order of 3000 electrons in the well to be available to interactwith the incoming photons. The noise level will inevitably increase as the photodector size decreases. Asa result, a careful trade-off is required between spatial resolution and dynamic range while ensuring that theshot-noise limited SNR remains adequate. In a pinned diode circuit the full well charge can be approximatedby: Q_(FW) = C_(PPD)(V_P-V_(TG)); where C_(PPD) is the average diode capacitance, V_P is the pinning potential, VTGis the photodiode saturation voltage which is a logarithmic function of I_(d0), determined by the width and lengthof the transfer transistor. VP becomes increasingly difficult to estimate as pixel size reduces, and thus 3D TCADis typically used to explore the circuit operation. At the same time, the diode geometry must be arranged tomaximize the value of C_(PPD). Further, for small pixels the transfer time (out of the diode well) is proportionalto l~3 , where l is the transfer distance, mandating a high performance data acquisition system and additionaloff-chip signal processing.Fully depleted silicon on insulator (FDSOI) processes have proved to be simpler to make than the equivalentbulk processes and may become a preferred option in advanced nodes below 20nm. Various hybrid bulk/SOIpixel structures have been proposed to address this issue. For example, both and describes a SOI CMOSactive pixel image sensors where the pinned photodiode, oating diffusion and transfer gate were fabricated onthe handle wafer while the reset and source follower circuits were built on the seed wafer. In this way, thephotodiode could be optimized for quantum efficiency and low dark currents independently of the other circuitsalthough the resulting pixel was still quite large (around 20μm × 20μm). However, in previous work, theprocess was able to be optimized in ways that suited the application. We aim to achieve a similar result using astandard process that could support conventional analogue and digital components on the same chip.Our proposed pixel structure is outlined in Fig. 1 (adapted from and), which combines a number ofexisting techniques to achieve a pixel with active dimensions in the order of 100-120nm. It can be seen fromthis sketch that the key restriction to sub-100nm pixel sizes in this technology is still the size of the p~-/p~+pinned diode in the handle wafer, identical to the limitations for the same structures in bulk. For example, wehave conducted our experiments in a commercial 28nm UTBB-FDSOI process for which the minimum n-wellsize is 80nm~2. The additional clearances required by the design rules mandates an absolute minimum pixel sizeof ~710nm square. Adding the reset and readout transistors implies a pixel pitch of around 1 micron, still toolarge for the eventual application. Bulk processes down to 16nm and SOI processes to 22nm are commerciallyavailable at this time. However, as n-well scaling is never proportional to gate length, these more aggressivetechnologies will, at best, reduce the pixel size to above 500nm, still too large for this application.Thus, although ultra-thin body FDSOI offer a compelling opportunity to optimize the design of the diodein the handle wafer separately to the various support transistors in the film, it is clear that this methodologycannot achieve a suitable sub-micron pixel pitch, even at the smallest technology nodes currently available.On the other hand, while FDSOI offers many advantages including high performance, low leakage and thestraightforward integration of mixed signal applications (digital/analog/RF), developing image sensor structuresin the silicon film (above the body oxide) is more problematic as the optically transparent thin film can resultin low quantum efficiency. As a result, on-chip signal processing will be necessary to improve the signal to noiseratio of the sensor. This will be the objective of our future work.
机译:芯片实验室是一种非常有前途的即时医疗技术,将标本直接放置在CMOS上 用于成像的芯片,无需使用任何标签或化学药品,也不需要中间的光学组件。 但是,迄今为止开发的芯片实验室技术受到CMOS图像现有像素尺寸的限制 传感器。为了能够准确解析少量生物样品,传感器像素尺寸必须小于 检查对象的大小。例如,细菌的范围从500nm到5μm,病毒的范围从30nm到5nm。 300nm,因此需要具有纳米级尺寸的图像传感器。但是,减小图像传感器的尺寸 具有挑战性。随着灵敏度的提高,光敏度在光学衍射极限及以下大大降低。 耦合较差。此外,CMOS图像传感器通常使用不会缩放的折射微透镜 衍射极限低于1.4μm。此外,常规的彩色滤光片是由吸收性染料或 在纳米厚度下不起作用的颜料。 打破这一尺寸障碍的一种有前途的替代方法涉及在金属中使用纳米级孔 薄膜产生局部等离振子共振。例如,针对制造的调查策略 挑战了亚微米RGB等离激元像素,并展示了成功地工作于1.4μm的像素。非常 据报道,基于局部的环形孔阵列,高达90%的高透射率 表面等离激元。我们的工作正在探索纳米光子像素技术的道路,在该技术中将制造像素 在一个亚微米CMOS像素上集成一个40-60 nm双同轴孔的等离激元像素 120纳米由于纳米光子像素阵列的间距最终取决于CMOS像素间距,因此本文 将重点关注限制这种几何形状的设计注意事项。 CMOS图像传感器提供低成本,低功耗和潜在的高集成度。在这种情况下, CMOS传感器几乎普遍使用钉扎光电二极管技术,这种技术最早是在20年前开发的,原因是 其固有的低噪声,高量子效率和低暗电流。通常将其与 \“有源像素传感器”(即每像素电压跟随器)电路和背面照明(基板变薄) 以大大提高性能。缩小CMOS传感器中光电二极管尺寸的主要限制因素是 合理的图像质量需要阱中约有3000个电子才能相互作用 与传入的光子。随着光电探测器尺寸的减小,噪声水平将不可避免地增加。作为 因此,需要在空间分辨率和动态范围之间进行仔细权衡,同时确保 受散粒噪声限制的SNR仍然足够。在固定二极管电路中,全阱电荷可以近似估算 通过:Q_(FW)= C_(PPD)(V_P-V_(TG));其中C_(PPD)是平均二极管电容,V_P是固定电位VTG 是光电二极管饱和电压,它是I_(d0)的对数函数,由宽度和长度确定 传输晶体管的随着像素尺寸的减小,VP变得越来越难以估计,因此3D TCAD 通常用于探索电路操作。同时,二极管的几何形状必须布置为 最大化C_(PPD)的值。此外,对于小像素,传输时间(从二极管阱出来)是成比例的 到l〜3,其中l是传输距离,要求使用高性能数据采集系统和其他功能 片外信号处理。 事实证明,完全耗尽的绝缘体上硅(FDSOI)工艺比同等工艺更容易制造 批量工艺,并可能成为20nm以下高级节点的首选。各种混合散装/ SOI 已经提出像素结构来解决这个问题。例如,两者和描述了SOI CMOS 有源像素图像传感器,其中固定了光电二极管, 在其上制作了扩散扩散和传输门 处理晶片,而复位和源极跟随器电路建立在种子晶片上。这样, 光电二极管可以针对量子效率和低暗电流进行优化,而与其他电路无关 尽管最终像素仍然很大(约20μm×20μm)。但是,在以前的工作中, 能够以适合应用程序的方式对过程进行优化。我们的目标是使用 可以在同一芯片上支持常规模拟和数字组件的标准过程。 我们建议的像素结构如图1所示(改编自和),其中结合了许多 现有技术,以实现有效尺寸在100-120nm数量级的像素。从中可以看出 此草图表明,这项技术对100nm以下像素大小的关键限制仍然是p〜-/ n / p〜+的大小 固定在处理晶圆中的二极管,与批量使用相同结构的限制相同。例如, 我们 已经在商用28nm UTBB-FDSOI工艺中进行了我们的实验,其最小n阱 尺寸为80nm〜2。设计规则要求的额外间隙要求绝对最小像素尺寸 〜710nm见方。添加复位和读出晶体管意味着像素间距大约为1微米,但仍然如此 大供最终使用。批量制程可达到16nm,SOI制程可达到22nm 目前可用。但是,由于n阱定标从未与栅极长度成正比,因此这些方法更具攻击性 这些技术充其量只能将像素尺寸减小到500nm以上,对于该应用而言仍然太大。 因此,尽管超薄体FDSOI提供了引人注目的机会来优化二极管的设计 在处理晶圆中将薄膜中的各种支持晶体管分开,很明显,这种方法 即使在当前可用的最小技术节点上,也无法达到合适的亚微米像素间距。 另一方面,FDSOI具有许多优点,包括高性能,低泄漏以及 混合信号应用程序(数字/模拟/ RF)的直接集成,开发图像传感器结构 硅膜(氧化体上方)中的问题更严重,因为可能会形成光学透明的薄膜 量子效率低。结果,将需要片上信号处理来改善信噪比。 传感器的比率。这将是我们未来工作的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号