首页> 外文会议>Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the Third IEEE Conference on >Application of the fuzzy learning algorithm to kinematic control ofa redundant manipulator with subtask optimization
【24h】

Application of the fuzzy learning algorithm to kinematic control ofa redundant manipulator with subtask optimization

机译:模糊学习算法在电机运动控制中的应用。具有子任务优化功能的冗余操纵器

获取原文

摘要

The authors previously introduced the fuzzy learning controlalgorithm as a method of trajectory tracking control for roboticsystems, based on conventional kinematic control methods but utilizingfuzzy regression to eliminate the need for modelling the kinematicequations of the manipulator. In this paper, the authors extend thealgorithm to the case of redundant manipulators, i.e. manipulators whichhave more joints then degrees of freedom in which they can move. Theredundant case presents additional challenges not found in thenon-redundant case, namely, a kinematic equation which must be solvedusing least squares as opposed to matrix inversion, and theincorporation of subtask optimization for the utilization of theredundant degrees of freedom. The authors address these challenges byonce again determining the main task, i.e. the “ranksolution” using fuzzy regression to determine a fuzzy Jacobianmatrix, and by determining a fuzzy performance index for subtaskoptimization using fuzzy inferencing. A simulation study is performedusing a three joint planar manipulator, with singularity avoidance asthe subtask. The results show that the extended fuzzy learning controlalgorithm causes the manipulator to satisfactorily follow the desiredtrajectory while keeping its configuration far from singularities.Moreover, it does so without being supplied any explicit model of thekinematics or the performance index. The former it learns through fuzzyregression, while the latter it possesses in the form of a fuzzy rulebase. The disadvantages and areas of future investigation for thisextension of fuzzy learning control are also discussed in this paper
机译:作者先前介绍了模糊学习控制 算法作为机器人轨迹跟踪控制的一种方法 系统,基于传统的运动学控制方法,但利用 模糊回归消除了对运动学建模的需要 机械手方程。在本文中,作者扩展了 冗余机械手情况下的算法,即 具有更多的关节,然后关节可以自由移动。这 冗余案例带来了其他挑战,而这些挑战是 非冗余情况,即必须求解的运动方程 使用最小二乘而不是矩阵求逆 合并子任务优化以利用 多余的自由度。作者通过以下方式解决了这些挑战 再次确定主要任务,即“等级” 解决方案”使用模糊回归确定模糊雅可比行列式 矩阵,并通过确定子任务的模糊性能指标 使用模糊推理进行优化。进行模拟研究 使用三关节平面操纵器,避免奇点为 子任务。结果表明,扩展的模糊学习控制 算法使机械手满意地遵循期望的 轨迹,同时使其配置远离奇异点。 此外,它没有提供任何明确的模型来执行此操作 运动学或性能指标。它通过模糊学习 回归,而后者具有模糊规则的形式 根据。这样做的缺点和未来的研究领域 本文还讨论了模糊学习控制的扩展

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号