首页> 外文会议>International Conference on Optics in Health Care and Biomedical Optics;Chinese Optical Society;Society of Photo-Optical Instrumentation Engineers;Tsinghua University >Simulation of near-infrared light propagation through the thorax of a neonate: addressing the optimization of source and detector positions for measuring lung oxygen content in preterm infants
【24h】

Simulation of near-infrared light propagation through the thorax of a neonate: addressing the optimization of source and detector positions for measuring lung oxygen content in preterm infants

机译:模拟近红外光穿过新生儿的胸腔:解决用于测量早产儿肺氧含量的源和检测器位置的优化问题

获取原文

摘要

Gas in scattering media absorption spectroscopy shortly called GASMAS, is a tunable diode laser spectroscopic techniquedeveloped for the measurement of gas present in turbid media. The technique relies on the sharp and specific absorption linesof gases which enables sensitive measurements of gas concentrations in the presence of a scattering solid medium with muchbroader absorption features. The Biophotonics laboratory at Tyndall National Institute (Biophotonics@Tyndall) is currentlyexploring the clinical translation of GASMAS technology into the respiratory healthcare of neonates. In this study, we usecomputational tools to assess the potential gain in gas absorption signal. One of the challenges in the development of theGASMAS technique is to obtain a sufficiently good signal in the measurements, as the light attenuation is high in tissue andthe lungs are interior organs. To have an estimation of the capabilities and limitations in this specific application of gasspectroscopy, we model the transmission of near infrared (NIR) light in tissue when a 760 nm source and a set of 68detectors are placed in different locations over the thorax. We segmented the main organs of the thorax from anonymizedDICOM images of a neonate. This is followed by the creation of 3D computational models to solve light propagation withthe diffusion equation, and the modelling of light propagation through the thorax of an infant including optical properties oflung, heart, arteries, bone, muscle, trachea, fat and skin. Finally, we calculate a map of the optimal light source – detectorconfigurations to obtain the highest signal from oxygen gas imprint in the lungs.The use of computational tools such as NIRFAST Slicer 2.0 for investigation and further understanding of the advantagesand limitations of the technology is fundamental. Such simulations enable the recreation of different clinical scenarios andidentification of the minimum requirements necessary to further improve the application and develop a bedside clinicaldevice that can potentially be used for continuous monitoring of lung function and control of ventilator settings. Thepotential capability of measuring non-invasively oxygen, water vapour and carbon dioxide in the lungs, would reduce theneed for intubation and extracorporeal membrane oxygenation, as well as lower the incidences of chronic lung disease.
机译:散射介质吸收光谱法中的气体(简称为GASMAS)是可调谐二极管激光光谱技术 专为测量混浊介质中的气体而开发。该技术依赖于尖锐和特定的吸收线 的气体,可以在存在大量分散固体介质的情况下灵敏地测量气体浓度 吸收特性更广。廷德尔国家研究所的生物光子学实验室(Biophotonics @ Tyndall)目前处于 探索GASMAS技术在新生儿呼吸保健方面的临床翻译。在这项研究中,我们使用 计算工具以评估气体吸收信号的潜在增益。发展中的挑战之一 GASMAS技术用于在测量中获得足够好的信号,因为组织和组织中的光衰减很高。 肺是内部器官。估算气体在此特定应用中的功能和局限性 光谱学中,当760 nm的光源和一组68 nm的光源时,我们对组织中近红外(NIR)光的传输进行建模 探测器放置在胸腔的不同位置。我们从匿名者那里分割了胸腔的主要器官 新生儿的DICOM图像。接下来是创建3D计算模型以解决光的传播 扩散方程,以及通过婴儿胸腔传播的光的模型,包括 肺,心脏,动脉,骨骼,肌肉,气管,脂肪和皮肤。最后,我们计算出最佳光源-检测器的图 配置以从氧气在肺部的印记中获得最高的信号。 使用诸如NIRFAST Slicer 2.0之类的计算工具进行调查并进一步了解其优势 技术的局限性是根本。这样的模拟可以重现不同的临床情况,并且 确定进一步改善应用和开发床边临床所需的最低要求 该设备可用于连续监测肺功能和控制呼吸机设置。这 潜在地测量肺中氧气,水蒸气和二氧化碳的能力会降低 需要进行插管和体外膜氧合作用,以及降低慢性肺病的发生率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号