首页> 外文会议>AIAA SciTech forum and exposition >Conceptual Design and Optimization of a Solar-Electric Blended Wing Body Aircraft for General Aviation
【24h】

Conceptual Design and Optimization of a Solar-Electric Blended Wing Body Aircraft for General Aviation

机译:通用航空太阳能电翼混合飞机的概念​​设计与优化

获取原文

摘要

To design an advanced electric aircraft, a multi-disciplinary design approach is used. The results indicate that the optimized configuration can achieve a flight performance higher than that of comparable existing aircraft despite a reduced maximum takeoff mass. The design and optimization were performed using SUAVE open-source, multi-disciplinary aircraft design environment. To increase the analysis fidelity, several additions to the existing analysis methods were made. These include an improved vehicle mass estimation method as well as the incorporation of the aerodynamic solver Q3D. For mass estimation, a physics-based buildup method is used. The mass estimation considers the actual wing planform, the local airfoil shape, and wing sweep. By using the vortex lattice method AVL, the aerodynamic loads are calculated according to certification specifications. Internal forces are used to size the structural elements such as wing skin, shear webs, and spar caps. Also, all relevant component masses are included to determine the aircraft total mass and center of gravity location. To improve the accuracy of the aerodynamic analysis the quasi-threedimensional aerodynamic solver Q3D is implemented. The methods are validated by test calculation of a reference configuration. Within SUAVE, a multi-variable design constrained optimization of the conceptual BWB configuration is performed using the SLSQP algorithm. The optimization process is carried out for two different objectives, representing some of the many possible design goals.
机译:为了设计先进的电动飞机,使用了多学科设计方法。结果表明,尽管最大起飞质量有所降低,但优化配置仍可实现比同等现有飞机更高的飞行性能。使用SUAVE开源,多学科飞机设计环境进行了设计和优化。为了提高分析保真度,对现有分析方法进行了一些补充。这些包括改进的车辆质量估计方法以及空气动力学求解器Q3D的合并。为了进行质量估计,使用了基于物理的建立方法。质量估算将考虑实际机翼平面形状,局部机翼形状和机翼后掠角。通过使用涡流格子法AVL,根据认证规格计算出空气动力学载荷。内力用于确定结构元件(如机翼蒙皮,抗剪腹板和翼梁盖)的尺寸。而且,所有相关的组件质量都被包括在内,以确定飞机的总质量和重心位置。为了提高空气动力学分析的准确性,实现了准三维空气动力学求解器Q3D。通过参考配置的测试计算来验证这些方法。在SUAVE中,使用SLSQP算法对概念性BWB配置进行了多变量设计约束优化。针对两个不同的目标(代表许多可能的设计目标)执行了优化过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号