首页> 外文会议>Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems >Large-Area Electronic Skins In Space: Vision and Preflight Characterization For First Aerospace Piezoelectric e-Textile
【24h】

Large-Area Electronic Skins In Space: Vision and Preflight Characterization For First Aerospace Piezoelectric e-Textile

机译:太空中的大面积电子皮肤:首次航空航天压电电子纺织的视觉和飞行前表征

获取原文
获取外文期刊封面目录资料

摘要

Aerospace-grade textiles have decades of flight heritage for protection against harsh elements of the space environment. However, these substrates have remained electrically passive despite occupying useful large-area real-estate on the exterior walls of persistent spacecraft. By leveraging electronic textiles in an aerospace context, hybrid fabrics can be developed that simultaneously protect spacecraft while also detecting debris or micrometeoroid hypervelocity impactors. Specifically, this paper describes prototype development and preflight testing of piezoelectric Beta cloth ahead of a scheduled late 2020 material resiliency test on the International Space Station. Two accessible manufacturing methods for piezoelectric fiber are introduced based on modifications to piezoelectric cable that reduce diameter, increase mechanical flexibility of the fiber, and improve compatibility with textile weft insertion techniques. A Beta cloth simulant with piezoelectric fiber is introduced and custom ultra low power readout electronics are specified, which allow for a first-order power consumption estimate for scaling of this material across large-area spacecraft walls. Finally, high-velocity impact sensor data measured using the Laser Induced Particle Impact Test (LIPIT) facility is presented, building towards an accurate prediction of impactor velocity.
机译:航空级纺织品具有数十年的飞行历史,可以防止太空环境中的恶劣因素。然而,尽管这些基板在永久性航天器的外壁上占据了有用的大面积房地产,但它们仍保持了电无源状态。通过在航空航天领域中利用电子纺织品,可以开发出既能保护航天器又能检测碎屑或微流变超高速撞击器的混合织物。具体来说,本文介绍了在国际太空站计划于2020年末进行的材料弹性测试之前,压电Beta布的原型开发和飞行前测试。基于对压电电缆的修改,介绍了两种可访问的压电纤维制造方法,这些方法可减小直径,增加纤维的机械柔韧性并改善与纺织纬线插入技术的兼容性。引入了使用压电纤维的Beta布模拟物,并指定了定制的超低功耗读出电子设备,该电子设备可对一阶功耗进行估算,以便在大面积航天器壁上缩放该材料。最后,介绍了使用激光诱导粒子撞击测试(LIPIT)设施测量的高速撞击传感器数据,以准确预测撞击器速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号