首页> 外文会议>IEEE Aerospace Conference >A Gecko-Like/Electrostatic Gripper for Free-Flying Perching Robots
【24h】

A Gecko-Like/Electrostatic Gripper for Free-Flying Perching Robots

机译:壁虎式/静电式抓取器,用于自由飞行的栖息机器人

获取原文

摘要

This paper describes the experimental evaluation of a robotic gripper's ability to perch on a variety of flat surfaces when used in conjunction with a free-flying robot in microgravity. The gripper is designed to be integrated with Astrobee, a free-flying robot deployed in the International Space Station (ISS) in April 2019. Astrobee was developed to help astronauts perform routine tasks while aboard the ISS. The robot has physical space for payloads such as a manipulator arm, which allows it to grasp grapple points such as handrails to conserve energy while maintaining a given position. However, grapple points are not always readily available. As such, the goal of this work is to have Astrobee perch onto other surfaces. To enable extended perching times, the gripper described here uses a gecko-like/electrostatic adhesive coupled with a cam-actuated mechanism designed to consume little to no energy while engaged with a surface. The gecko-like adhesives allow the gripper to easily attach and detach to/from surfaces through the camactuation mechanism. The gripper was tested in a simulated microgravity environment where it was mounted on a platform equipped with air bearings. This paper describes the gripper design and evaluates the gripper's attachment performance as a function of the platform's approach velocity and approach angle for several different target material types. The gripper perched on glass and acrylic substrates with over a 70% success rate. For carbon fiber/epoxy laminate and Kapton sheets the success rate was approximately 50%. The results showed a clear correlation between the approach velocity and approach angle for carbon and glass materials.
机译:本文介绍了与微重力下的自由飞行机器人配合使用时,机器人夹持器在各种平坦表面上栖息的能力的实验评估。该夹具设计为与2019年4月在国际空间站(ISS)部署的自由飞行机器人Astrobee集成在一起。Astrobee的开发旨在帮助宇航员在ISS上执行例行任务。机器人具有用于装载有效载荷的物理空间,例如机械臂,从而使其能够抓住抓手(例如扶手)以节省能量,同时保持给定位置。但是,抓斗点并不总是很容易获得。因此,这项工作的目标是让Astrobee栖息在其他表面上。为了延长停留时间,此处描述的抓取器使用壁虎式/静电粘合剂,并结合了凸轮致动机构,凸轮致动机构设计成在与表面接合时几乎不消耗任何能量。壁虎状的粘合剂使抓取器可以通过凸轮驱动机构轻松地在表面上附着和分离。夹具在模拟微重力环境中进行了测试,将其安装在配有空气轴承的平台上。本文介绍了夹具的设计,并针对几种不同的目标材料类型,根据平台的接近速度和接近角度评估了夹具的附着性能。抓爪可固定在玻璃和丙烯酸基材上,成功率超过70%。对于碳纤维/环氧树脂层压板和Kapton板,成功率约为50%。结果表明,碳和玻璃材料的接近速度和接近角度之间存在明显的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号