首页> 外文会议>Design, Automation and Test in Europe Conference and Exhibition >Multiplier Architectures: Challenges and Opportunities with Plasmonic-based Logic : (Special Session Paper)
【24h】

Multiplier Architectures: Challenges and Opportunities with Plasmonic-based Logic : (Special Session Paper)

机译:乘数架构:基于等离子逻辑的挑战与机遇:(专题会议论文)

获取原文

摘要

Emerging technologies such as plasmonics and pho-tonics are promising alternatives to CMOS for high throughput applications, thanks to their waveguide’s low power consumption and high speed of computation. Besides these qualities, these novel technologies also implement logic functionalities uncommon to traditional technologies that can be beneficial to existing CMOS architectures. In this work, we study how plasmonic-based devices can complement CMOS technology to achieve a more efficient implementation of multiplier architectures, which are the core of state-of-the-art data- and signal-processing circuits. A critical part of modern multipliers is the partial-product reduction step, used to reduce the partial product tree into a 2-input addition. In CMOS technology, this step is achieved by using compact and fast counters. On the other hand, the proposed plasmonic cells naturally implement counters of 3-, 9- and 27-inputs within a few logic levels at ultra-high speed. Thus, we present novel multiplier architectures, which take advantage of large plasmonic-based counters to reduce the number of cells and logic levels in the partial product reduction step of the multiplication. Our experimental results show that 3 levels and 30 counters are needed when 27-input cells are used. On the other side, 6 levels and 72 counters are employed with 9-input cells. Finally, we present various 16 × 16 multiplier implementations mixing 9- and 27-input cells, focusing on the trade-off in the number of counters, levels, and area of each architecture.
机译:等离子体和光子学等新兴技术因其波导的低功耗和高速运算能力,有望在高吞吐量应用中替代CMOS。除了这些特性之外,这些新颖的技术还实现了传统技术不常见的逻辑功能,这对现有的CMOS体系结构可能是有益的。在这项工作中,我们研究了基于等离激元的设备如何补充CMOS技术,以更有效地实现乘法器架构,而乘法器架构是最新的数据和信号处理电路的核心。现代乘法器的关键部分是部分乘积减少步骤,用于将部分乘积树减少为2输入加法。在CMOS技术中,此步骤是通过使用紧凑且快速的计数器来实现的。另一方面,提出的等离子体单元以超高速自然地在几个逻辑电平内实现了3、9和27输入的计数器。因此,我们提出了新颖的乘法器体系结构,该体系结构利用了基于等离激元的大型计数器来减少乘法的部分乘积减少步骤中的单元数和逻辑电平。我们的实验结果表明,当使用27个输入单元时,需要3个电平和30个计数器。另一方面,对9个输入单元使用6个电平和72个计数器。最后,我们提出了混合9输入和27输入单元的各种16×16乘法器实现,重点是每种架构的计数器数量,级别和面积的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号