首页> 外文会议>AIAA SciTech Forum and Exposition >Hydrostructural Optimization of Generic Composite Hydrofoils
【24h】

Hydrostructural Optimization of Generic Composite Hydrofoils

机译:通用复合水翼的水力优化

获取原文

摘要

Composite materials have been increasingly used in marine structures due to their advantages in specific strength, fatigue performance, and anti-erosion. Designs of composite hydrofoils require different considerations compared to airfoils due to much higher fluid density and other unique physics, such as cavitation. Cavitation is one of the main limitations to hydrofoil performance when operating at high-speeds or near-free-surface conditions. The objective of this work is to design hydrofoils to delay cavitation inception, to increase efficiency, and to ensure structural safety by optimizing the shape and composite fiber orientation angle using a gradient-based optimization method with high-fidelity CFD and FEM models. Cavitation occurs when the local absolute pressure drops to or below the saturated vapor pressure, which can be avoided by imposing a stringent constraint on the cavitation-inceptive area on the hydrofoil surface during optimization. We performed single-point optimizations for both composite and metallic hydrofoils at two different conditions. We first showed the result for one optimized composite hydrofoil and the comparison with the baseline. We also compared the performance of optimized composite hydrofoils to optimized aluminum hydrofoils. All optimized hydrofoils showed significantly delayed cavitation inception and improved efficiency compared to the corresponding baseline hydrofoils. For single-point optimization, the optimized designs of the composite hydrofoil and the aluminum hydrofoils are shown to be very similar in terms of the final geometry, efficiency, and susceptibility to cavitation. The composite hydrofoils are much less susceptible to structural failure compared to metallic hydrofoils due to the intrinsic high strength, making composite structure advantageous over conventional metallic structure in structural safety and endurance.
机译:由于复合材料在比强度,疲劳性能和抗腐蚀方面的优势,它们已越来越多地用于海洋结构中。与翼型相比,复合水翼的设计需要不同的考虑因素,这是因为其流体密度高得多,并且具有其他独特的物理特性,例如空化作用。当在高速或接近自由地面的条件下运行时,气蚀是水翼性能的主要限制之一。这项工作的目的是设计水翼,以通过使用基于高保真CFD和FEM模型的基于梯度的优化方法优化形状和复合纤维取向角来延迟气蚀现象的发生,提高效率并确保结构安全。当局部绝对压力降至或低于饱和蒸气压时会发生气穴现象,这可以通过在优化过程中对水翼表面上的气穴接受区域施加严格的约束来避免。我们在两种不同条件下对复合材料和金属水翼片进行了单点优化。我们首先显示了一种优化的复合水翼的结果,并与基线进行了比较。我们还比较了优化的复合水翼和优化的铝水翼的性能。与相应的基线水翼相比,所有优化的水翼都显着延迟了气蚀开始并提高了效率。对于单点优化,复合水翼和铝水翼的优化设计在最终几何形状,效率和对气蚀的敏感性方面非常相似。由于固有的高强度,与金属水翼相比,复合水翼不易遭受结构破坏,从而使得复合结构在结构安全性和耐久性方面优于常规金属结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号