首页> 外文会议>AIAA SciTech Forum and Exposition >Application of Digital Particle Tracking and Schlieren Imaging to Study Debris Cloud and Shockwave Formation During Hypervelocity Impacts
【24h】

Application of Digital Particle Tracking and Schlieren Imaging to Study Debris Cloud and Shockwave Formation During Hypervelocity Impacts

机译:数字粒子跟踪和Schlieren成像在超胶质局部撞击中研究碎片覆盖和冲击波的应用

获取原文

摘要

The study of hypervelocity impacts (HVIs) is of increasing interest in numerous engineering applications involving micrometeoroids, orbital debris, hypersonic vehicles, and hypervelocity weapons systems. The associated relative velocities are typically in excess of several kilometers per second. The experimental and modeling studies of HVIs are instrumental in damage estimation and designing protective armor for personnel and hardware. In typical HVIs, debris clouds are formed at the front and rear of the target and propagate outwards. By unraveling the physics of these debris clouds, it is possible to gain a fundamental understanding of the energy of the impact, energy absorption and dissipation, and material failure mechanisms. Such knowledge also helps to determine the feasibility of materials for protective applications. Innovative optical diagnostic techniques can be applied to study the temporal and spatial evolution of these debris clouds. In this work, we use digital particle tracking and schlieren imaging to analyze HVIs produced by a two-stage light gas gun that can launch metal or polymer projectiles of 2-10 mm in diameter at speeds of 2-8 km/s. The target material in these experiments is ultra-high molecular weight polyethylene (UHMWPE). A dynamic delay generator system was developed to obtain synchronized ultra-high-speed videos at frame rates greater than 1M fps of the formation and expansion of the debris cloud. A particle tracking code enables the estimation of particle size and velocity from these videos. Additionally, a lens-type schlieren imaging system is used to track the density gradients produced by the shock waves formed by the fragments. These results are vital to better characterize, develop, and validate materials failure models during HVI events.
机译:超细沉积影响的研究(HVIS)对涉及微型物品,轨道碎片,超音速车辆和超细型武器系统的许多工程应用的兴趣越来越多。相关的相对速度通常超过每秒几公里。 HVIS的实验性和建模研究是用于人员和硬件的损伤估计和设计保护盔甲的仪器。在典型的HVIS中,在目标的前后形成碎屑云并向外传播。通过解开这些碎片云的物理学,可以对影响的能量,能量吸收和耗散和材料故障机制来获得基本的理解。这些知识还有助于确定用于保护应用的材料的可行性。可以应用创新的光学诊断技术来研究这些碎片云的时间和空间演化。在这项工作中,我们使用数字粒子跟踪和Schlieren成像来分析由两级轻气枪产生的HVI,可在2-8 km / s的速度下发射2-10毫米的金属或聚合物射弹。这些实验中的靶材料是超高分子量聚乙烯(UHMWPE)。开发了一种动态延迟发生器系统,以在碎片云的形成和扩展的帧速率下获得同步的超高速视频。粒子跟踪代码能够估计这些视频的粒度和速度。另外,镜片型Schlieren成像系统用于跟踪由片段形成的冲击波产生的密度梯度。这些结果对于在HVI事件期间更好地表征,开发和验证材料故障模型至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号