首页> 外文会议>International Workshop on Electromagnetics >Keynote speech 1: THz research at State Key Laboratory of Millimeter Waves, Partner Laboratory in City University of Hong Kong
【24h】

Keynote speech 1: THz research at State Key Laboratory of Millimeter Waves, Partner Laboratory in City University of Hong Kong

机译:主题演讲1:香港城市大学伙伴实验室毫米波国家重点实验室研究

获取原文

摘要

In this presentation, we discuss some of the recent THz research activities conducted by faculty members at the State Key Laboratory of Millimeter Waves (SKLMW), Partner Laboratory in City University of Hong Kong. As advised by Academician Shenggang Liu, President of University of Electronic Science and Technology of China from 1986 to 2001 and with support allocated from the Innovation and Technology Commission of Hong Kong SAR and City University of Hong Kong, we started to build up our THz measurement infrastructure in 2012. We are now equipped with facilities for full-range of frequency-domain characterization of circuits, ICs and antennas from 10 MHz to 1.1 THz and time-domain reflection, transmission and spectroscopy up to 3.5 THz. Through access to other departmental facilities, we have micro- and nano-fabrication capabilities for making THz circuits and devices. With fabrication and measurement capabilities in hand, we pursued the investigation of both passive and active frequency selective surfaces (FSSs). We have demonstrated a THz frequency tunable fishnet metamaterial using an electrically controlled polymer dispersed liquid crystal matrix. A tuning range of 10GHz was achieved with the resonance at 0.86 THz. Research on improving the tuning range is on-going. We investigated high-selectivity bandpass FSS in THz band using multilayered FSS screen with systematic introduction of transmission zeros. The metallic and dielectric materials are aluminum and Benzocyclobutene (BCB) polymer, respectively. The FSS resonates at 0.85 THz with an insertion loss of 3.82 dB. For FSS, all the unit cells are identical in size and geometrical shape. In contrast, metasurfaces, with designated electromagnetic responses, are formed by controlling the scattering amplitude and phase of individual unit cells. Again, multilayered screens are employed to provide the needed design degrees of freedom. We have realized frequency scanning metasurfaces with angular and lateral scanning capabilities. Similarly, we have realized metasurfaces for 2D scanning for frequency band between 0.225 to 0.3 THz. On the other hand, we have manipulated the reflection, transmission and polarization of THz waves through metasurfaces in the forms of reflectarrays, transmitarrays and orthomode transducers. New fabrication technologies in 3D printing and nanoimprinting allow us to scale our antenna research to new heights. We developed lens antennas using 3D printing up to 0.3 THz and 1 THz 2-by-2 antenna array using nanoimprinting technology. Electrical properties of the 3D printing materials are retrieved from THz time-domain spectroscopy measurement. The 1-THz array has an ultra-wide bandwidth of 260 GHz, benefitting from the magneto-electric dipole implementation. THz IC design is also a major research thrust in SKLMW. Our first THz source IC at 0.32 THz using 65 nm technology from TSMC yields an output of 0dBm (1mW) and 6dBm (4mW) EIRP when integrated with an LTCC antenna. All the aforementioned devices are characterized in SKLMW and we will also present our tailor made THz near-field scanning system and various probes that we have designed for our THz Mueller matrix imaging system.
机译:在本演示文稿中,我们讨论了香港城市大学伙伴实验室的国家重点实验室教师成员所进行的最近近期的研究活动。如1986年至2001年的电子科学和技术大学院长胜鲁院长刘刘刘刘议员,并从香港特区和香港城市大学的创新和技术委员会分配了支持,我们开始建立了我们的THz测量2012年基础设施。我们现在配备了电路,IC和天线的全范围频率域表征的设施,从10 MHz到1.1星级和时域反射,传输和光谱,高达3.5至36至THz。通过访问其他部门设施,我们拥有微型和纳米制造能力,用于制作THZ电路和设备。在手中进行制造和测量功能,我们正在追求被动和主动频率选择性表面(FSSS)的调查。我们已经使用电控聚合物分散的液晶基质证明了THz频率可调鱼网超材料。在0.86至6月的共振实现10GHz的调谐范围。改善调谐范围的研究正在进行中。我们使用多层FSS屏幕在THz频段中调查了高选择性带通配合FSS,具有系统引入传输零。金属和介电材料分别是铝和苯并丁烯(BCB)聚合物。 FSS以0.85 ZHz共振,插入损耗为3.82 dB。对于FSS,所有单元电池的尺寸和几何形状相同。相反,通过控制各个单元电池的散射幅度和相位来形成具有指定电磁响应的元件。同样,使用多层屏幕来提供所需的设计自由度。我们已经实现了具有角度和横向扫描能力的频率扫描元件。同样,我们已经实现了2D扫描的MEDasurface,用于频带0.225至0.3至THz。另一方面,我们通过反射阵列,传输阵列和矫形器换能器的形式地操纵了THZ波的反射,传输和极化。 3D打印和纳米印刷中的新制造技术使我们能够将天线研究扩展到新的高度。我们使用纳米视图技术使用3D打印和1至THz 2×2天线阵列的3D打印开发了镜头天线。从THz时域光谱测量中检索3D打印材料的电性能。 1-THz阵列具有260 GHz的超宽带宽,受益于磁电偶极实施。 THz IC设计也是SKLMW中的一个主要研究推力。我们的第一个THz源IC以0.32 THz使用从TSMC的65 NM技术产生0dBm(1mW)和6dBm(4mW)EIRP的输出,当与LTCC天线集成时。所有上述设备都以SKLMW为特征,我们还将展示我们的量身定制的THz近场扫描系统和我们为我们的THZ Mueller矩阵成像系统设计的各种探测器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号