首页> 外文会议>International Conference on Computational Intelligence for Smart Power System and Sustainable Energy >An Improved Water Cycle Optimized Extreme Learning Machine with Ridge Regression towards Effective Maximum Power Extraction for Photovoltaic based Active Distribution Grids
【24h】

An Improved Water Cycle Optimized Extreme Learning Machine with Ridge Regression towards Effective Maximum Power Extraction for Photovoltaic based Active Distribution Grids

机译:改进的水循环优化极限学习机,具有脊向有效的最大功率提取的基于光伏的有源配电网的岭回归

获取原文

摘要

Accurate Maximum Power Point Tracking (MPPT) is addressed in this paper for Photovoltaic (PV) based Distributed Generation (DG) by virtue of an error optimized (by Improved Water Cycle) Extreme Learning Machine with Ridge Regression (IWC-ELMRR). For robust performance against this DG integration DC bus voltage ($V_{dc}$) stability is obtained by considering the PV system to be single-staged (DC-AC). As solar power is independent with respect to grid operation, The MPPT output is considered for stable grid response in terms of DC-AC control parameter calculation. The power demand at grid side is considered with a provision to be compensated by Battery Energy Storage (BES), operated parallel to PV-DG at DC bus. The MPPT schemes are prone to estimation error ($Er_{MPP}$), especially while considering PV part (e.g. shading) and grid part (e.g. short-circuit faults) uncertainties. Thus robust depletion in $Er_{MPP}$ profile is targeted to be achieved irrespective of grid/ DG contingencies by mean of proposed IWC-ELMRR. Here randomness and data dependent performance of Artificial Neural Network (ANN) based MPPT approach is overcome by estimating optimal initial weight parameters through IWC. A sinusoidal chaotic map is used for accurate, nonlinear assessment of MPP values under grid/ DG uncertainties. The fastness in computation is achieved by non-iterative Moore Penrose pseudo- Inverse (MPI). The efficacy of the proposed technique is evidenced in terms of improvement in $Er_{MPP}$ profile, reduced dynamic oscillation at DG coupling bus. Various cases are considered in MATLAB environment against such superiority performance, compared with recent MPPT techniques.
机译:本文针对基于光伏(PV)的分布式发电(DG)进行了精确的最大功率点跟踪(MPPT),该方法具有误差优化(通过改进的水循环)具有岭回归的极限学习机(IWC-ELMRR)。为了在DG集成DC总线电压下表现出强大的性能( $ V_ {dc} $ < / tex> 通过考虑将光伏系统设为单级(DC-AC),可以获得稳定性。由于太阳能相对于电网运行而言是独立的,因此在DC-AC控制参数计算方面考虑将MPPT输出用于稳定的电网响应。电网侧的电源需求被认为是由电池储能(BES)补偿的,该储能与DC总线上的PV-DG并联运行。 MPPT方案容易产生估计误差( $ Er_ {MPP} $ < / tex> ),尤其是在考虑PV部分(例如阴影)和电网部分(例如短路故障)的不确定性时。因此健壮的耗尽 $ Er_ {MPP} $ < / tex> 通过提议的IWC-ELMRR,无论电网/ DG突发事件如何,都可以实现该配置文件。在此,通过IWC估算最佳初始权重参数,可以克服基于人工神经网络(ANN)的MPPT方法的随机性和数据相关性能。正弦曲线混沌图用于在电网/ DG不确定性条件下对MPP值进行准确,非线性的评估。计算的牢度是通过非迭代的摩尔彭罗斯伪逆(MPI)实现的。所提出的技术的有效性从以下方面得到了证明: $ Er_ {MPP} $ < / tex> 轮廓,减少了DG耦合总线上的动态振荡。与最新的MPPT技术相比,在MATLAB环境中考虑了针对这种优越性能的各种情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号