首页> 外文会议>IEEE International Symposium on Circuits and Systems >Hardware Implementation of PCM-Based Neurons with Self-Regulating Threshold for Homeostatic Scaling in Unsupervised Learning
【24h】

Hardware Implementation of PCM-Based Neurons with Self-Regulating Threshold for Homeostatic Scaling in Unsupervised Learning

机译:具有自调节阈值的基于PCM的神经元的硬件实现,用于无监督学习中的稳态缩放

获取原文

摘要

Brain-inspired neuromorphic engineering aims at designing networks capable of learning from their own experience, in terms of both plasticity and stability. In biology, homeostatic scaling can regulate the frequency of neural processing in the brain and enable efficient synaptic learning activity. Implementing homeostatic regulation into hardware neural networks can thus enable stable, energy-efficient learning. Here, we present a novel artificial neuron based on phase change memory (PCM) devices capable of homeostatic regulation and power saving via self-adaptive threshold control. We experimentally show that this mechanism optimizes multi-pattern learning of the Fashion-MNIST dataset with asynchronous spike-timing-dependent plasticity (STDP). The PCM-based adaptive threshold is shown to act as a spike-frequency modulator of the whole neural network, giving robustness to the system against external perturbations. This work highlights the suitability of PCM devices for the optimization of synaptic dynamics and the implementation of brain-inspired neuromorphic circuits for cognitive agents and edge computing.
机译:受大脑启发的神经形态工程旨在设计能够从自身经验中学习可塑性和稳定性的网络。在生物学中,稳态缩放可以调节大脑中神经处理的频率并实现有效的突触学习活动。因此,在硬件神经网络中实施稳态调节可以实现稳定,节能的学习。在这里,我们介绍了一种基于相变存储(PCM)设备的新型人工神经元,该设备能够通过自适应阈值控制实现稳态调节和节能。我们通过实验表明,该机制可优化具有异步峰值时序相关可塑性(STDP)的Fashion-MNIST数据集的多模式学习。基于PCM的自适应阈值显示为整个神经网络的尖峰频率调制器,为系统提供了抵抗外部干扰的鲁棒性。这项工作强调了PCM设备对于优化突触动力学和实现脑启发性神经形态电路以实现认知剂和边缘计算的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号