首页> 外文会议>IEEE Conference on Computer Communications >Optimizing Federated Learning on Non-IID Data with Reinforcement Learning
【24h】

Optimizing Federated Learning on Non-IID Data with Reinforcement Learning

机译:通过强化学习优化非IID数据上的联合学习

获取原文

摘要

The widespread deployment of machine learning applications in ubiquitous environments has sparked interests in exploiting the vast amount of data stored on mobile devices. To preserve data privacy, Federated Learning has been proposed to learn a shared model by performing distributed training locally on participating devices and aggregating the local models into a global one. However, due to the limited network connectivity of mobile devices, it is not practical for federated learning to perform model updates and aggregation on all participating devices in parallel. Besides, data samples across all devices are usually not independent and identically distributed (IID), posing additional challenges to the convergence and speed of federated learning. In this paper, we propose Favor, an experience-driven control framework that intelligently chooses the client devices to participate in each round of federated learning to counterbalance the bias introduced by non-IID data and to speed up convergence. Through both empirical and mathematical analysis, we observe an implicit connection between the distribution of training data on a device and the model weights trained based on those data, which enables us to profile the data distribution on that device based on its uploaded model weights. We then propose a mechanism based on deep Q-learning that learns to select a subset of devices in each communication round to maximize a reward that encourages the increase of validation accuracy and penalizes the use of more communication rounds. With extensive experiments performed in PyTorch, we show that the number of communication rounds required in federated learning can be reduced by up to 49% on the MNIST dataset, 23% on FashionMNIST, and 42% on CIFAR-10, as compared to the Federated Averaging algorithm.
机译:机器学习应用程序在无处不在的环境中的广泛部署引发了对利用存储在移动设备上的大量数据的兴趣。为了保护数据隐私,已提出联合学习以通过在参与设备上本地执行分布式培训并将本地模型聚合为全局模型来学习共享模型。但是,由于移动设备的网络连接性有限,对于联合学习而言,在所有参与设备上并行执行模型更新和聚合是不切实际的。此外,跨所有设备的数据样本通常不是独立且均匀分布的(IID),这对联合学习的融合和速度提出了额外的挑战。在本文中,我们提出了Favor,这是一种由经验驱动的控制框架,该框架可以智能地选择客户端设备来参与每一轮联邦学习,以平衡非IID数据引入的偏见并加快收敛速度​​。通过经验和数学分析,我们观察到设备上训练数据的分布与基于这些数据训练的模型权重之间的隐式联系,这使我们能够根据设备上载的模型权重来分析该设备上的数据分布。然后,我们提出一种基于深度Q学习的机制,该机制将学习在每个通信回合中选择设备的子集以最大化奖励,从而鼓励提高验证准确性并惩罚使用更多通信回合。通过在PyTorch中进行的广泛实验,我们证明,与联邦制相比,联邦学习所需的交流轮数在MNIST数据集上最多可以减少49%,在FashionMNIST上可以减少23%,在CIFAR-10上可以减少42%。平均算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号