首页> 外文会议>IEEE International Symposium on Information Theory >Information-theoretic analysis for transfer learning
【24h】

Information-theoretic analysis for transfer learning

机译:迁移学习的信息理论分析

获取原文

摘要

Transfer learning, or domain adaptation, is concerned with machine learning problems in which training and testing data come from possibly different distributions (denoted as μ and μ', respectively). In this work, we give an informationtheoretic analysis on the generalization error and the excess risk of transfer learning algorithms, following a line of work initiated by Russo and Zhou. Our results suggest, perhaps as expected, that the Kullback-Leibler (KL) divergence D(μ║μ') plays an important role in characterizing the generalization error in the settings of domain adaptation. Specifically, we provide generalization error upper bounds for general transfer learning algorithms, and extend the results to a specific empirical risk minimization (ERM) algorithm where data from both distributions are available in the training phase. We further apply the method to iterative, noisy gradient descent algorithms, and obtain upper bounds which can be easily calculated, only using parameters from the learning algorithms. A few illustrative examples are provided to demonstrate the usefulness of the results. In particular, our bound is tighter in specific classification problems than the bound derived using Rademacher complexity.
机译:转移学习或领域适应与机器学习问题有关,其中训练和测试数据可能来自不同的分布(分别表示为μ和μ')。在这项工作中,我们遵循Russo和Zhou发起的一系列工作,对泛化错误和转移学习算法的额外风险进行了信息理论分析。我们的结果表明,也许正如预期的那样,Kullback-Leibler(KL)散度D(μ║μ')在表征域自适应设置中的泛化误差方面起着重要作用。具体来说,我们为一般的转移学习算法提供了泛化误差上限,并将结果扩展到特定的经验风险最小化(ERM)算法,在该阶段,两种分布的数据都可以在训练阶段获得。我们进一步将该方法应用于迭代的,有噪声的梯度下降算法,并且仅使用来自学习算法的参数即可获得可以轻松计算的上限。提供了一些说明性示例以证明结果的实用性。特别是,在特定分类问题中,我们的界限比使用Rademacher复杂度得出的界限更严格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号