首页> 外文会议>ASME international mechanical engineering congress and exposition >INTEGRATION AND OPTIMIZATION OF SUPERCRITICAL CARBON DIOXIDE BRAYTON CYCLE AND GOSWAMI CYCLE
【24h】

INTEGRATION AND OPTIMIZATION OF SUPERCRITICAL CARBON DIOXIDE BRAYTON CYCLE AND GOSWAMI CYCLE

机译:超临界二氧化碳布雷顿循环和高斯瓦米循环的整合与优化

获取原文

摘要

Utilization of waste heat from an energy conversion process is a key step in improving the overall energy system conversion efficiency and reducing the cost of energy. Since a supercritical CO_2 Brayton power cycle is being considered as an important cycle for the conversion of solar energy to power, we propose to utilize the heat rejected from this cycle to feed a bottoming thermodynamic cycle. Goswami cycle can utilize the low temperature waste heat to produce both power and cooling in the same loop. Moreover, refrigeration and space cooling are usually more expensive than heating in most applications. This paper describes the modeling and simulation results of the combined Brayton and Goswami cycles. The mass flow ratio of the two cycles is determined by the heat exchanger effectiveness method, constraining the minimum allowed temperature difference. The operating parameters that yield the best performance in terms of overall cycle efficiency, net work, and cooling outputs were found through the optimization of a numerical model developed in MA TLAB. The cooling production in the Goswami cycle is maximized at the expense of the net work in order to produce the maximum refrigeration output. A maximum combined efficiency for power and cooling generation above 45% can be found when the inlet temperature at the Brayton cycle is set at 700 °C.
机译:利用来自能量转换过程的废热是提高整体能源系统转换效率和降低能源成本的关键步骤。由于超临界CO_2布雷顿功率循环被视为将太阳能转换为功率的重要循环,因此我们建议利用从该循环中排出的热量来补充底部的热力学循环。 Goswami循环可以利用低温废热在同一回路中产生功率和冷却​​。而且,在大多数应用中,制冷和空间冷却通常比加热更昂贵。本文描述了Brayton和Goswami组合循环的建模和仿真结果。这两个循环的质量流量比通过换热器效率方法确定,并限制了最小允许温差。通过在MA TLAB中开发的数值模型的优化,找到了在整体循环效率,净功和冷却输出方面可获得最佳性能的运行参数。戈斯瓦米(Goswami)循环中的制冷产量被最大化,以牺牲净功为代价,以产生最大的制冷量。当布雷顿循环的入口温度设置为700°C时,可以实现发电和制冷的最高综合效率超过45%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号