首页> 外文期刊>International journal of hydrogen energy >Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles
【24h】

Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

机译:线性太阳能收集器中直接蒸汽产生与超临界二氧化碳布雷顿功率循环之间的集成

获取原文
获取原文并翻译 | 示例
       

摘要

Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficiency and reducing balance of plant equipments dimensions and cots. For gaining synergies between these two innovative technologies, in this paper, Direct Steam Generation and Brayton power cycles are integrated in line-focusing solar power plants. Four configurations are studied: Configuration 1 consists on installing a condenser between solar field and power cycle; condensing the heat transfer fluid (steam water) with the balance of plant working fluid (carbon dioxide). The condenser would be a shell & tubes type. Along tubes carbon dioxide flows, and steam water condensates at shell-side. Main advantage of the condenser equipment is the high heat transfer coefficient at water condensing-side, reducing condenser dimension and weight. The main disadvantage of this configuration is the high operating pressure required in solar field for condensing steam into liquid water. This pressure should be between 150 bar and 175 bar for obtaining 400 degrees C at turbine inlet. In the Configuration 2, the superheated steam delivered by solar collectors transfers the heat energy in a primary heat exchanger to the balance of plant working fluid. In this configuration the steam not condensate into liquid water, and only reduces the temperature from 550 degrees C-560 degrees C to 420 degrees C. The steam pressure drops in solar field along receivers, headers and heat exchangers are compensated by means of steam compressors. This second solution is compatible with higher turbine inlet temperatures, up to 550 degrees C. The keystones of this second configuration are the steam conditions at compressor inlet, pressure similar to 175 bars and temperature similar to 420 degrees C, for minimizing steam compressor electrical consumption. The third design solution (Configuration 3) includes a solar field with direct steam generation in solar collectors with boiling recirculation mode, but the balance of plant is integrated by two Brayton power cycles in cascade. The first power cycle operating at 550 degrees C turbine inlet, and the second cycle at 410 degrees C turbine inlet. Main advantage is the integration between a validated direct steam generation technology (recirculation boiling mode) with the Brayton power cycles avoiding steam compressors, a technology not yet commercially available, and main drawback of this design is the increasing number of balance of plant equipments. The Configuration 4 is very similar to the Configuration 2, with the same direct steam generation solar field with superheated steam without condensing, and a single reheating stage solar field with molten salt as heat transfer fluid.
机译:在抛物线槽或线性菲涅尔太阳能集热器中直接产生蒸汽是自九十年代(1990年代初)以来一直在开发的一种技术,用于代替集中式太阳能发电厂中的导热油和导热油,从而避免对环境的影响。与直接产生蒸汽的技术并行发展的同时,超临界二氧化碳布雷顿动力循环正在逐渐替代传统的朗肯循环,以提高工厂的净效率并减少工厂设备尺寸和床的平衡。为了获得这两种创新技术之间的协同作用,本文将直接蒸汽发电和布雷顿(Brayton)动力循环集成到了以线路为中心的太阳能发电厂中。研究了四种配置:配置1包括在太阳能场和电源循环之间安装冷凝器;将传热流体(蒸汽水)与工厂工作流体(二氧化碳)的其余部分冷凝。冷凝器为壳管式。二氧化碳沿着管子流动,蒸汽水在壳侧凝结。冷凝器设备的主要优点是冷凝水侧的传热系数高,减小了冷凝器的尺寸和重量。这种配置的主要缺点是在太阳能领域中需要很高的工作压力才能将蒸汽冷凝成液态水。为了在涡轮机入口获得400摄氏度,该压力应在150 bar至175 bar之间。在配置2中,由太阳能收集器输送的过热蒸汽将一次热交换器中的热能传递到工厂工作流体的其余部分。在这种配置中,蒸汽不会凝结成液态水,只会将温度从550摄氏度降低到560摄氏度,降至420摄氏度。太阳能场中沿着接收器,集管和热交换器的蒸汽压降通过蒸汽压缩机来补偿。第二种解决方案与高达550摄氏度的更高涡轮机入口温度兼容。第二种配置的重点是压缩机入口处的蒸汽条件,压力类似于175 bar和温度类似于420°C,以最大程度地减少蒸汽压缩机的电力消耗。第三种设计解决方案(配置3)包括一个太阳能场,该太阳能场在具有沸腾再循环模式的太阳能收集器中直接产生蒸汽,但是工厂的平衡由两个Brayton功率级联集成。第一个功率循环在550摄氏度的涡轮机入口处运行,第二个循环在410摄氏度的涡轮机入口处运行。主要优点是经过验证的直接蒸汽发生技术(再循环沸腾模式)与避免蒸汽压缩机的布雷顿功率循环之间的集成(该技术尚未在市场上获得),该设计的主要缺点是工厂设备的平衡数量不断增加。构造4与构造2非常相似,具有相同的直接蒸汽产生太阳能场,其中过热蒸汽不冷凝,并且具有熔融盐作为传热流体的单个再加热级太阳能场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号