首页> 外文会议>ASME Internal Combustion Engine Division Technical Conference >COMPUTATIONALLY EFFICIENT SIMULATION OF MULTI-COMPONENT FUEL COMBUSTION USING A SPARSE ANALYTICAL JACOBIAN CHEMISTRY SOLVER AND HIGH-DIMENSIONAL CLUSTERING
【24h】

COMPUTATIONALLY EFFICIENT SIMULATION OF MULTI-COMPONENT FUEL COMBUSTION USING A SPARSE ANALYTICAL JACOBIAN CHEMISTRY SOLVER AND HIGH-DIMENSIONAL CLUSTERING

机译:使用稀疏分析雅可比化学求解器和高维聚类计算多分量燃料燃烧的计算上高效仿真

获取原文

摘要

The need for more efficient and environmentally sustainable internal combustion engines is driving research towards the need to consider more realistic models for both fuel physics and chemistry. As far as compression ignition engines are concerned, phenomenological or lumped fuel models are unreliable to capture spray and combustion strategies outside of their validation domains - typically, high-pressure injection and high-temperature combustion. Furthermore, the development of variable-reactivity combustion strategies also creates the need to model comprehensively different hydrocarbon families even in single fuel surrogates. From the computational point of view, challenges to achieving practical simulation times arise from the dimensions of the reaction mechanism, that can be of hundreds species even if hydrocarbon families are lumped into representative compounds, and thus modeled with non-elementary, skeletal reaction pathways. In this case, it is also impossible to pursue further mechanism reductions to lower dimensions. CPU times for integrating chemical kinetics in internal combustion engine simulations ultimately scale with the number of cells in the grid, and with the cube number of species in the reaction mechanism. In the present work, two approaches to reduce the demands of engine simulations with detailed chemistry are presented. The first one addresses the demands due to the solution of the chemistry ODE system, and features the adoption of SpeedCHEM, a newly developed chemistry package that solves chemical kinetics using sparse analytical Jacobians. The second one aims to reduce the number of chemistry calculations by binning the CFD cells of the engine grid into a subset of clusters, where chemistry is solved and then mapped back to the original domain. In particular, a high-dimensional representation of the chemical state space is adopted for keeping track of the different fuel components, and a newly developed bounding-box-constrained k-means algorithm is used to subdivide the cells into reactively homogeneous clusters. The approaches have been tested on a number of simulations featuring multi-component diesel fuel surrogates, and different engine grids. The results show that significant CPU time reductions, of about one order of magnitude, can be achieved without loss of accuracy in both engine performance and emissions predictions, prompting for their applicability to more refined or full-sized engine grids.
机译:对更高效和环境可持续的内燃机的需求正在促进对需要考虑更现实的模型的研究,以考虑燃料物理和化学。只要压缩点火发动机所涉及,现象学或集成的燃料模型是不可靠的,以捕获它们的验证结构域之外的喷雾和燃烧策略 - 通常,高压注入和高温燃烧。此外,变量反应性燃烧策略的发展也会产生甚至在单燃料代理中综合不同的烃类家族的需求。从计算的观点来看,实现实际模拟时间的挑战从反应机制的尺寸产生,即使烃类家族被簇被簇被簇成代表性化合物,也可以是数百种物种,因此用非基本的骨架反应途径建模。在这种情况下,还不可能追求进一步的机制降低到较低的维度。用于整合内燃机模拟中的化学动力学的CPU时间最终与网格中的细胞数量和反应机制中的立方体数量相比。在本作工作中,提出了两种利用详细化学来减少发动机模拟需求的方法。第一个解决了由于化学颂系统的解决方案所需的要求,并采用了一种新开发的化学包装,该包装使用稀疏分析雅各比人解决化学动力学。第二个目的是通过将发动机栅格的CFD电池融入到簇的子集中来减少化学计算的数量,其中化学被解决,然后将其映射回原域。特别地,采用化学状态空间的高尺寸表示用于跟踪不同的燃料分量,并且使用新开发的边界箱约束的K均值算法用于将细胞细分为反应性均匀的簇。这些方法已经过了多组分柴油燃料代理和不同发动机网格的许多模拟。结果表明,在发动机性能和排放预测中,可以在不损失精度的情况下实现大约一个级的CPU时间减少,促使它们对更精致或全尺寸的引擎网格的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号