首页> 外文会议>AIAA aviation forum >Aeroservoelastic Wing Sizing Using a Physics-Based Approach in Conceptual Aircraft Design
【24h】

Aeroservoelastic Wing Sizing Using a Physics-Based Approach in Conceptual Aircraft Design

机译:在概念飞机设计中使用基于物理方法的航空弹性翼尺寸

获取原文

摘要

State of the art wing sizing in conceptual aircraft design is usually carried out by semi-empirical methods, or with static load cases and a rigid airframe structure. On the other hand, combining the disciplines aerodynamics, structures and flight dynamics catches the impact of dynamic aircraft behavior on the mass of the flexible wing. By taking coupled physics effects into account at the early design stage, technologies like gust and maneuver load alleviation can be assessed. Overall aircraft efficiency benefits are expected. This paper presents a process for the integration of flight control and aeroelasticity into conceptual aircraft design. The main goal is an expansion of the wing design by introducing mission based dynamic load cases performed with a flexible structure. The process uses the tool ASWING to perform an unsteady lifting line calculation combined with non-linear Euler beam theory. Structural wing sizing is performed on a long range transport aircraft design. Elements of an open source simulation library are used to perform a controlled six-degree-of-freedom flight simulation. The sizing process is calibrated with the properties of a higher fidelity structure model, based on steady load cases. A dynamic validation of the lower fidelity behavior is provided by a higher fidelity approach, using unsteady Reynolds-Averaged Navier-Stokes equations coupled with a structural modal ansatz in a free flight simulation. It is shown, that the conceptual sizing process captures the maximum loads and dominant dynamic effects. Therefore it is qualified for usage in conceptual aircraft design. Deviations are traced back to configuration differences between the models and fundamental differences of the modeling approach. The presented process enables the assessment of how specific flight control laws and layouts change the optimum aircraft design.
机译:概念飞机设计中最先进的机翼尺寸调整通常是通过半经验方法进行的,或者采用静态载荷情况和刚性机身结构进行。另一方面,将空气动力学,结构和飞行动力学这两个学科相结合,可以捕捉动态飞机行为对柔性机翼质量的影响。通过在设计的早期阶段就考虑到耦合的物理效应,可以评估阵风和机动负荷减轻等技术。总体而言,飞机效率会有好处。本文提出了将飞行控制和空气弹性集成到概念飞机设计中的过程。主要目标是通过引入以灵活的结构执行的基于任务的动态载荷工况来扩展机翼设计。该过程使用工具ASWING结合非线性Euler梁理论来执行非稳态举升线计算。结构性机翼的尺寸确定是在远程运输飞机的设计上进行的。开源仿真库的元素用于执行受控的六自由度飞行仿真。根据稳定载荷情况,使用更高保真度的结构模型的属性对尺寸调整过程进行了校准。通过在飞行模拟中使用不稳定的雷诺平均Navier-Stokes方程与结构模态ansatz结合的较高保真度方法,可以通过较高保真度方法对较低保真度行为进行动态验证。结果表明,概念上的大小确定过程可以捕获最大的负载和主要的动态效果。因此,它适合在概念飞机设计中使用。偏差可追溯到模型之间的配置差异和建模方法的基本差异。提出的过程可以评估特定的飞行控制规则和布局如何改变最佳飞机设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号