首页> 外文会议>AIAA SciTech forum and exposition >Dynamic Smagorinsky Modeled Large-Eddy Simulations of Turbulence Using Tetrahedral Meshes
【24h】

Dynamic Smagorinsky Modeled Large-Eddy Simulations of Turbulence Using Tetrahedral Meshes

机译:使用四面体网格的动态Smagorinsky建模湍流大涡模拟

获取原文

摘要

Eddy-resolving numerical computations of turbulent flows are emerging as viable alternatives to Reynolds Averaged Navier-Stokes (RANS) calculations for flows with an intrinsically steady mean state due to the advances in large-scale parallel computing. In these computations, medium to large turbulent eddies are resolved by the numerics while the smaller or subgrid scales are either modeled or taken care of by the inherent numerical dissipation. To advance the state of the art of unstructured-mesh turbulence simulation capabilities, large eddy simulations (LES) using the dynamic Smagorinsky model (DSM) on tetrahedral meshes are carried out with the space-time conservation element, solution element (CESE) method. In contrast to what has been reported in the literature, the present implementation of dynamic models allows for active backscattering without any ad-hoc limiting of the eddy viscosity calculated from the subgrid-scale model. For the benchmark problems involving compressible isotropic turbulence decay as well as the shock/turbulent boundary layer interaction benchmark problems, no numerical instability associated with kinetic energy growth is observed and the volume percentage of the backscattering portion accounts for about 38-40% of the simulation domain. A slip-wall model in conjunction with the implemented DSM is used to simulate a relatively high Reynolds number Mach 2.85 turbulent boundary layer over a 30° ramp with several tetrahedral meshes and a wall-normal spacing of either Δy~+ = 10 or Δy~+ = 20. The computed mean wall pressure distribution, separation region size, mean velocity profiles, and Reynolds stress agree reasonably well with experimental data.
机译:由于大规模并行计算的进步,湍流的涡旋解析数值计算已成为雷诺平均Navier-Stokes(RANS)计算的一种替代方法,该方法具有固有的稳定平均状态。在这些计算中,中到大型湍流由数值解决,而较小或次网格比例则由固有数值耗散建模或处理。为了提高非结构网格湍流仿真技术的水平,采用时空守恒元素,求解元素(CESE)方法对四面体网格使用动态Smagorinsky模型(DSM)进行了大涡流仿真(LES)。与文献中报道的相反,动态模型的当前实现方式允许主动反向散射,而对从子网格规模模型计算出的涡流粘度没有任何特别的限制。对于涉及可压缩各向同性湍流衰减以及冲击/湍流边界层相互作用基准问题的基准问题,未观察到与动能增长相关的数值不稳定性,并且后向散射部分的体积百分比约占模拟的38-40%领域。滑移壁模型与已实现的DSM一起用于在30°坡道上模拟相对较高的雷诺数马赫2.85湍流边界层,并带有几个四面体网格,并且壁法向间距为Δy〜+ = 10或Δy〜 + =20。计算出的平均壁压分布,分离区域大小,平均速度曲线和雷诺应力与实验数据相当吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号