首页> 外文会议>ASME International Design Engineering Technical Conferences;Computers and Information in Engineering Conference;Design Automation Conference >ROBUST OPTIMIZATION WITH MIXED INTERVAL AND PROBABILISTIC PARAMETER UNCERTAINTIES, MODEL UNCERTAINTY, AND METAMODELING UNCERTAINTY
【24h】

ROBUST OPTIMIZATION WITH MIXED INTERVAL AND PROBABILISTIC PARAMETER UNCERTAINTIES, MODEL UNCERTAINTY, AND METAMODELING UNCERTAINTY

机译:混合时间间隔和概率参数不确定性,模型不确定性和元建模不确定性的鲁棒优化

获取原文

摘要

Various types of uncertainties, such as parameter uncertainty, model uncertainty, metamodeling uncertainty may lead to low robustness. Parameter uncertainty can be either epistemic or aleatory in physical systems, which have been widely represented by intervals and probability distributions respectively. Model uncertainty is formally defined as the difference between the true value of the real-world process and the code output of the simulation model at the same value of inputs. Additionally, metamodeling uncertainty is introduced due to the usage of metamodels. To reduce the effects of uncertainties, robust optimization (RO) algorithms have been developed to obtain solutions being not only optimal but also less sensitive to uncertainties. Based on how parameter uncertainty is modeled, there are two categories of RO approaches: interval-based and probability-based. In real-world engineering problems, both interval and probabilistic parameter uncertainties are likely to exist simultaneously in a single problem. However, few works have considered mixed interval and probabilistic parameter uncertainties together with other types of uncertainties. In this work, a general RO framework is proposed to deal with mixed interval and probabilistic parameter uncertainties, model uncertainty, and metamodeling uncertainty simultaneously in design optimization problems using the intervals-of-statistics approaches. The consideration of multiple types of uncertainties will improve the robustness of optimal designs and reduce the risk of inappropriate decision-making, low robustness and low reliability in engineering design. Two test examples are utilized to demonstrate the applicability and effectiveness of the proposed RO approach.
机译:各种类型的不确定性(例如参数不确定性,模型不确定性,元模型不确定性)可能导致鲁棒性低。在物理系统中,参数不确定性可以是认知的,也可以是偶然的,分别已分别由间隔和概率分布表示。正式将模型不确定性定义为在相同输入值下,真实过程的真实值与仿真模型的代码输出之间的差。另外,由于使用了元模型,因此引入了元模型不确定性。为了减少不确定性的影响,已经开发了鲁棒优化(RO)算法,以获得不仅最优而且对不确定性不敏感的解决方案。根据参数不确定性的建模方式,RO方法分为两类:基于间隔的方法和基于概率的方法。在实际的工程问题中,间隔和概率参数不确定性可能在单个问题中同时存在。但是,很少有工作考虑混合区间和概率参数的不确定性以及其他类型的不确定性。在这项工作中,提出了一种通用的RO框架,以使用统计间隔方法在设计优化问题中同时处理混合区间和概率参数不确定性,模型不确定性和元建模不确定性。考虑多种类型的不确定性将提高最佳设计的稳健性,并减少工程设计中决策不当,稳健性低和可靠性低的风险。利用两个测试示例来证明所提出的反渗透方法的适用性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号