首页> 外文会议>Offshore technology conference >Machine Learning and Quantitative Ground Models for Improving Offshore Wind Site Characterization
【24h】

Machine Learning and Quantitative Ground Models for Improving Offshore Wind Site Characterization

机译:机器学习和定量地面模型,用于改善海上风场特征

获取原文

摘要

Quantitative integrated ground models are a requirement for proper cost optimal site characterization, for offshore renewables, coastal activities and O&G projects. Geotechnical analyses and interpretations often rely on isolated 1D boreholes. On the other hand, geophysical data are collected in 2D lines and/or 3D volumes. Geophysical data therefore provides the natural link to re-populate geotechnical properties found in the 1D boreholes onto a larger area and thereby build a consistent and robust ground model. The geophysical data can be used to estimate geotechnical data and, as of today, there are a few methods available that can reliably map the dynamic properties from the seismic data (stratigraphic information, P-wave velocities, amplitudes, and their attributes) into geotechnical or geomechanical properties, particularly for shallow sub-surface depth. Being able to predict soil properties away from boreholes is important, as often the field layout changes during the development phase, and hence, information at the specific foundation locations may not be readily available. We have developed a workflow to build quantitative ground models following three approaches; (ⅰ) a geometric model in which the seismic data interpretations guide the prediction of geotechnical properties; (ⅱ) a geostatistical approach in which in addition to the structural constraints, we used the seismic velocities to guide the prediction; and (ⅲ) a multi-attribute regression using an artificial neural network (ANN). We apply it to a set of publically available data from the Holland Kust Zuid wind farm site in the Dutch sector of the North Sea. The result of the workflow yields maps or sub-volumes of geotechnical or geomechanical properties across the development site that can be used in further planning or engineering design. In this study, we use the tip resistance from a CPT as an example. The tip resistance derived using all methods generally give good results. Validation against randomly selected CPT shows good correlation between predicted and measured tip resistance. The ANN performs better than the geostatistical approach. However, these two approaches require good data quality and a rather large dataset to be effective. Therefore, using a global dataset not restricted to the Holland Kust Zuid site may improve the prediction. Moreover, using existing empirical correlation and calibration through laboratory testing or by training another ANN model, the geotechnical stiffness/strength parameters such as angle of friction or undrained shear strength could be derived. The next step is to use the results and their uncertainty into a cost assessment for the given foundation concepts.
机译:定量集成地面模型是海上可再生能源,沿海活动和O&G项目进行适当成本最佳现场表征的必要条件。岩土工程分析和解释通常依赖于孤立的一维钻孔。另一方面,地球物理数据以2D线和/或3D体积收集。因此,地球物理数据提供了自然的联系,可以将一维钻孔中发现的岩土属性重新填充到更大的区域,从而建立一致且健壮的地面模型。地球物理数据可用于估计岩土数据,并且到目前为止,有几种方法可以可靠地将地震数据(地层信息,P波速度,振幅及其属性)中的动态特性映射到岩土中或地质力学特性,尤其是对于浅地下深度而言。能够预测远离井眼的土壤特性非常重要,因为在开发阶段现场布局经常会发生变化,因此,特定地基位置的信息可能不容易获得。我们开发了一种工作流,可以通过以下三种方法来建立定量的地面模型: (ⅰ)几何模型,其中地震数据解释指导岩土属性的预测; (ⅱ)地统计方法,其中除结构约束外,我们还使用地震速度来指导预测; (ⅲ)使用人工神经网络(ANN)进行多属性回归。我们将其应用于北海荷兰地区的Holland Kust Zuid风电场的一组公开可用数据。工作流的结果生成了整个开发站点中岩土或岩土力学属性的地图或子卷,可用于进一步的计划或工程设计。在本研究中,我们以CPT的尖端电阻为例。使用所有方法得出的笔尖阻力通常会产生良好的结果。针对随机选择的CPT进行的验证显示,预测电阻值和测量电阻值之间的相关性很好。人工神经网络的性能优于地统计方法。但是,这两种方法需要良好的数据质量和相当大的数据集才能有效。因此,使用不限于Holland Kust Zuid站点的全局数据集可以改善预测。此外,通过实验室测试或通过训练另一种ANN模型,使用现有的经验相关性和校准,可以得出岩土工程的刚度/强度参数,例如摩擦角或不排水的抗剪强度。下一步是将结果及其不确定性用于给定基础概念的成本评估中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号