首页> 外文会议>AIAA SciTech forum and exposition >A Computationally Efficient Turnkey Approach to Turbulent Combustion Modeling: From Elusive Fantasy to Impending Reality
【24h】

A Computationally Efficient Turnkey Approach to Turbulent Combustion Modeling: From Elusive Fantasy to Impending Reality

机译:计算湍流燃烧建模的高效交钥匙方法:从难以捉摸的幻想到即将来临的现实

获取原文

摘要

The fundamental shortcoming of all current approaches to turbulent combustion modeling is the reliance on extensive a priori knowledge of a combustion system to be simulated. In traditional manifold-based turbulent combustion models such as "flamelet"-like models and Conditional Moment Closure, combustion processes are constrained to a single asymptotic mode of combustion, so the dominant mode of combustion must be identified a priori, if even possible for the multi-modal combustion processes typical of many practical combustion systems. Even in theoretically more general turbulent combustion models such as the Transported Probability Density Function approach and the Linear Eddy Model, their extreme computational cost requires the use of highly reduced chemical mechanisms that are valid over only a narrow region of thermochemical state space, which must be identified a priori. In order to enable the widespread adoption of computational simulations for turbulent combustion, a computationally efficient turnkey approach to turbulent combustion modeling is desperately needed. Such an approach must accommodate (1) multi-modal combustion, (2) non-adiabatic combustion, (3) multi-stream combustion (including multi-component fuels), and (4) pollutants, yet the approach must still be computationally efficient, ideally competitive with traditional manifold-based combustion models. In this paper, recent and ongoing efforts toward the development of such a model are discussed. The modeling framework relies on multi-dimensional manifold equations that are capable of accommodating non-adiabatic multi-modal combustion in its most general form. To accommodate multi-stream combustion, multiple mixture fractions can be introduced as additional manifold parameters. With such a complex model, online computation of the manifold and online convolution against an appropriate (subfilter) PDF manifold during LES or RANS calculations becomes necessary. To accommodate pollutants, the manifold can be cast as an equilibrium manifold for fast processes with slow pollutant processes modeled with separate explicit transport equations or as fully integrated non-equilibrium manifold, albeit at increased computational cost in the latter approach. Finally, a number of remaining issues and future directions are identified including the integration of compressibility effects into reduced-order manifold turbulent combustion models and the unification of turbulence modeling with reduced-order manifold turbulent combustion models.
机译:当前用于湍流燃烧建模的所有方法的根本缺点是依赖于要模拟的燃烧系统的广泛先验知识。在传统的基于歧管的湍流燃烧模型中(例如“小火焰”样模型和条件矩闭合),燃烧过程被限制为单一的渐近燃烧模式,因此,即使对于可能的燃烧模式,也必须先验确定主要燃烧模式。许多实际燃烧系统中典型的多峰燃烧过程。即使在理论上更通用的湍流燃烧模型(例如运输概率密度函数方法和线性涡流模型)中,其极端的计算成本也需要使用高度简化的化学机理,这些化学机理仅在热化学状态空间的狭窄区域内有效,必须确定先验。为了使湍流燃烧的计算模拟能够被广泛采用,迫切需要湍流燃烧建模的计算有效的交钥匙方法。这种方法必须适应(1)多模式燃烧,(2)非绝热燃烧,(3)多流燃烧(包括多组分燃料)和(4)污染物,但是该方法仍必须在计算上有效,与传统的基于歧管的燃烧模型相比具有理想的竞争力。在本文中,讨论了开发这种模型的最新进展和正在进行的努力。该建模框架依赖于多维流形方程,该方程能够以最一般的形式适应非绝热多峰燃烧。为了适应多流燃烧,可以将多种混合馏分作为附加的歧管参数引入。对于这样一个复杂的模型,在LES或RANS计算过程中,流形的在线计算和针对适当的(子过滤器)PDF流形的在线卷积变得必要。为了容纳污染物,可将歧管铸造为快速过程的平衡歧管,将慢速污染物过程建模为单独的显式运输方程,或者铸造为完全集成的非平衡歧管,尽管在后一种方法中会增加计算成本。最后,确定了许多尚待解决的问题和未来方向,包括将压缩性效应集成到降阶歧管湍流燃烧模型中,以及将湍流建模与降阶歧管湍流燃烧模型统一起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号