首页> 外文会议>AIAA SciTech forum and exposition >Exploration of consistent numerical integration for a 2D Lagrangian discontinuous Galerkin (DG) hydro dynamic method
【24h】

Exploration of consistent numerical integration for a 2D Lagrangian discontinuous Galerkin (DG) hydro dynamic method

机译:二维拉格朗日间断Galerkin(DG)流体动力学方法的一致数值积分探索

获取原文

摘要

Cell-centered discontinuous Galerkin (DG) methods have been developed for solving the 2D gas dynamic equations in Lagrangian hydrodynamics. Different from finite volume (FV) methods, a volume integral and a surface integral must be calculated with DG methods. The challenge is that the surface integration accuracy needs to be consistent with the volume integration; otherwise, a spurious velocity component is produced that is perpendicular to the flow direction on ID problems using a 2D code with a square mesh. Gauss-Lobatto quadrature is commonly used with Lagrangian FV and DG methods for the surface integration because the integration points coincide with the vertices of the element. The volume integrals in DG methods are commonly approximated using Gauss-Legendre quadrature, which is exact for a polynomial up to a degree of In - 1 with n quadrature points. Since the Gauss-Lobatto quadrature is only exact for a polynomial up to a degree of In - 3, this necessitates the usage of more quadrature points on the face (i.e., higher-order elements) for ensuring that the surface integration has commensurate accuracy to the volume integration. To obtain a consistent numerical integration with linear elements, we propose a consistent mixed Gauss quadrature rule for the surface and volume integrals in the DG evolution equations. The term 'consistent' means that the surface integration method is sufficiently accurate to eliminate the spurious velocity component perpendicular to the flow direction for ID problems on 2D meshes, and the term 'mixed' means that the Gauss-Lobatto and Gauss-Legendre quadrature rules are both used for approximating the integrals. The consistent mixed quadrature approach will integrate the surface fluxes involving the velocity using the Gauss-Labatto quadrature rule, and then integrate all other integrals using the Gauss-Legendre quadrature rule including the surface fluxes involving the mechanical stress. The commonly used integration approach with DG methods is a mixed quadrature approach because the surface integration rule is different from the volume integration rule; however, it is not consistent in terms of accuracy. In this work, we will show that the consistent mixed Gauss quadrature rule will remove the spurious velocity component and that it delivers the designed second-order accuracy on linear elements. The accuracy and robustness of the Lagrangian DG hydrodynamic method with this consistent mixed Gauss quadrature rule are demonstrated by calculating a suite of challenging test problems with linear meshes. We also present results using a combination of various quadrature rules.
机译:已经开发了以单元为中心的不连续伽勒金(DG)方法来求解拉格朗日流体动力学中的二维气体动力学方程。与有限体积(FV)方法不同,必须使用DG方法计算体积积分和表面积分。挑战在于表面积分精度需要与体积积分保持一致。否则,使用带有正方形网格的2D代码,会产生与ID问题上的流向垂直的杂散速度分量。拉格朗日FV和DG方法通常将Gauss-Lobatto正交用于表面积分,因为积分点与元素的顶点重合。 DG方法中的体积积分通常使用Gauss-Legendre正交来近似,这对于一个具有n个正交点的In-1级的多项式是精确的。由于Gauss-Lobatto正交仅对于不超过In-3的多项式是精确的,因此有必要在面上使用更多正交点(即高阶元素),以确保表面积分具有与之相对应的精度。卷整合。为了获得与线性元素的一致数值积分,我们为DG演化方程中的表面和体积积分提出了一致的混合高斯正交规则。术语“一致”表示表面积分方法足够精确,可以消除二维网格上ID问题的垂直于流动方向的杂散速度分量,术语“混合”表示Gauss-Lobatto和Gauss-Legendre正交规则都用于逼近积分。一致的混合正交方法将使用Gauss-Labatto正交规则积分涉及速度的表面通量,然后使用Gauss-Legendre正交规则积分所有其他积分,包括涉及机械应力的表面通量。由于表面积分法则与体积积分法则不同,因此与DG法常用的积分法是混合正交法。但是,在准确性方面并不一致。在这项工作中,我们将证明一致的混合高斯正交规则将消除杂散速度分量,并且它将在线性元素上提供设计的二阶精度。拉格朗日DG流体力学方法与该一致的混合高斯求积规则的准确性和鲁棒性通过计算一组具有线性网格的挑战性测试问题来证明。我们还提出了使用各种正交规则的组合的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号