首页> 外文会议>Conference on composites at Lake Louise >NATURAL FUNCTIONALLY-GRADED COMPOSITES IN HARD-TO-SOFT TISSUE (BONE-TENDON) JUNCTIONS
【24h】

NATURAL FUNCTIONALLY-GRADED COMPOSITES IN HARD-TO-SOFT TISSUE (BONE-TENDON) JUNCTIONS

机译:硬-软组织(骨-肌腱)接合处的天然功能梯度复合材料

获取原文

摘要

Composite materials are often functionally engineered to imbue desired mechanical properties in materials for structural applications. Nature has long engaged in such composite engineering of biological organisms, which has evolved in both flora and fauna in response to specific mechanical demands. Incorporation of phenolic compounds (like lignin) in stiffening cell assemblies in plant basts, or of silica in plant leaves to resist chomping insect incursions, are good examples in the plant world. Skeletal bone in vertebrates is the classic example in the animal kingdom, a composite of flexible fibrous polymerized organic protein and platy-crystalline inorganic mineral that results in a mechanically strong, hard, tough tissue. The musculo-skeletal system of vertebrates in fact comprises a variety of both hard and soft tissue types (bone, cartilage, tendon, ligament), generative cell types (osteoblasts, chondrocytes, tenocytes, fibroblasts, all of which can derive from multipotent mesenchymal stem cell precursors), and fibrous connective-tissue proteins (chiefly collagen, types Ⅰ and Ⅱ) that are susceptible to varying degrees of mineralization. In the case of bone, mineralization is extensive and forms a bi-continuous composite of mineral (chiefly partially-carbonated hydroxyapatite [Ca_(10)(P_4,CO_3)_6(OH)_2] and precursors) and collagen (a triple a-helix polypeptide) that self-assembles into protein fibrils (mostly type Ⅰ collagen). Bone continually remodels itself and also re-forms as a consequence of injury or around implanted prostheses (such as knee and hip prostheses). High-resolution analytical TEM reveals a mineralization mechanism which entails initial creation, at the mitochondria of bone-forming cells (osteoblasts), of pre-packaged vesicles that fill with a calcium-phosphate hydrogel and thereafter migrate through the cell wall. The vesicle contents subsequently crystallize in the extra-cellular space with the dissolution of the vesicle containment wall, shortly before self-assembling collagen is expressed from the osteoblasts, providing a "just-in-time" ready source of Ca and P for mineralization of collagen fibrils with close to (though not identical with) the Ca/P ratio of hydroxyapatite found in the mature bone composite. The critical connective junctions between different tissue types in the musculo-skeletal system (bone, cartilage, tendon, muscle, ligament) involve several hard-tissue/soft-tissue interfaces, characterized by gradients in mineralization, cell type, cell morphology, and collagen self-assembly modes. For example, standard procedure for re-attachment of ruptured tendons-by surgically re-locating the tendon proximally to bone-re-establishes the important bone-tendon junction (enthesis) in a period of about one year. The process proceeds through growth, contiguous to the (fully mineralized) bone surface, of a partially-mineralized fibrocartilage layer (comprising collagen, expressed by chondrocyte cells, that self-assembles into principally Type Ⅱ and Type Ⅹ collagens). TEM of ovine models shows that mineralization of this cartilaginous layer appears to occur via the identical mechanism established for bone mineralization but initiated instead by chondrocyte cells. SEM reveals that the cell-type in the remaining unmineralized cartilage portion gradually morphs into tenocytes, which form more elastic tendon fibers comprising, again, mostly Type Ⅰ collagen (but also Types Ⅲ, Ⅳ, Ⅴ and Ⅸ self-assembly motifs). The resulting hard-tissue/soft-tissue enthesis junction is thus seen to be a multiply graded interface involving three different cell types, several different collagen self-assembly motifs, and the functional gradation of a composite material paradigm spanning fully-hard tissue (bone) to fully-soft tissue (tendon).
机译:复合材料通常在功能上经过工程设计,以赋予结构应用材料所需的机械性能。大自然长期从事生物有机体的这种复合工程,它已根据特定的机械要求在动植物群中进化。在植物界中,将酚类化合物(如木质素)掺入植物韧皮中以增强细胞,或将二氧化硅掺入植物叶片中以阻止昆虫入侵。脊椎动物的骨骼骨骼是动物界的经典例子,它是一种由柔性纤维状聚合的有机蛋白质和片状结晶无机矿物质组成的复合物,可形成机械强度高,坚硬而坚韧的组织。脊椎动物的肌肉骨骼系统实际上包括各种硬组织和软组织类型(骨骼,软骨,腱,韧带),生殖细胞类型(成骨细胞,软骨细胞,肌腱细胞,成纤维细胞),所有这些都可以来源于多能的间充质干细胞前体)和纤维化的结缔组织蛋白(主要是Ⅰ型和Ⅱ型胶原蛋白),这些蛋白易于发生不同程度的矿化。就骨骼而言,矿化作用广泛,并形成矿物质(主要是部分碳酸化的羟基磷灰石[Ca_(10)(P_4,CO_3)_6(OH)_2]和前体)和胶原蛋白(三重a-自组装成蛋白质原纤维(主要是Ⅰ型胶原)的螺旋多肽)。骨头会不断重塑自身,并会因受伤或植入的假体(例如膝盖和髋关节假体)周围而重塑。高分辨率分析TEM揭示了一种矿化机制,该机制要求在成骨细胞(成骨细胞)的线粒体中首先形成预包装的囊泡,该囊泡充满磷酸钙水凝胶,然后迁移穿过细胞壁。随后,在成骨细胞表达自组装胶原蛋白之前不久,随着囊泡壁的溶解,囊泡内含物随后在细胞外空间中结晶,从而为钙和磷的矿化提供了“及时”的钙和磷的即时来源。胶原蛋白原纤维具有与成熟骨复合物中发现的羟基磷灰石Ca / P比接近(尽管不完全相同)的特性。肌肉骨骼系统中不同组织类型(骨骼,软骨,肌腱,肌肉,韧带)之间的关键结缔结涉及多个硬组织/软组织界面,其特征在于矿化,细胞类型,细胞形态和胶原蛋白的梯度自组装模式。例如,用于重新附着破裂的肌腱的标准程序是通过在大约一年的时间内通过外科手术将肌腱向近端重新定位到骨骼,从而建立重要的骨骼-肌腱连接处(骨骼)。该过程通过部分矿化的纤维软骨层(包含由软骨细胞表达的胶原蛋白,其自身组装成主要的Ⅱ型和growth型胶原蛋白)生长到(完全矿化的)骨骼表面附近来进行。绵羊模型的TEM显示,该软骨层的矿化似乎是通过为骨骼矿化建立的相同机制发生的,但由软骨细胞发起。扫描电镜显示,剩余的未矿化软骨部分中的细胞类型逐渐变形成肌腱细胞,形成更多弹性的肌腱纤维,肌腱纤维又主要包含Ⅰ型胶原蛋白(也包括Ⅲ,Ⅳ,Ⅴ和Ⅸ型自组装基序)。因此,所形成的硬组织/软组织结合部是一个多重渐变的界面,涉及三种不同的细胞类型,几种不同的胶原蛋白自组装基序以及跨越全硬组织(骨骼)的复合材料范式的功能等级)到完全柔软的组织(肌腱)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号