首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >TRANSCRITICAL/SUPERCRITICAL CO_2 RECOMPRESSION BRAYTON CYCLE USING A NOVEL ROTARY LIQUID PISTON COMPRESSOR
【24h】

TRANSCRITICAL/SUPERCRITICAL CO_2 RECOMPRESSION BRAYTON CYCLE USING A NOVEL ROTARY LIQUID PISTON COMPRESSOR

机译:使用新型旋转液体活塞压缩机的跨/超临界CO_2再压缩布雷顿循环

获取原文

摘要

This paper presents a transcritical / supercritical CO2 (sCO_2) recompression Brayton cycle using a novel rotary liquid piston compressor (LPC). This new type of multi-phase compressor utilizes a pumped motive fluid that interfaces with sCO_2 in a rotating ducted cylinder for efficient CO_2 compression at lower hardware costs. The energy required to pump the motive fluid can be significantly lower than that required to compress CO_2 in a traditional compressor. The compressor utilizes a low compressibility, low diffusivity, low solubility liquid as the motive fluid to pressurize process fluid (sCO_2) stream. Its use as a replacement for the main compressor in a recompression sCO_2 Brayton cycle is expected to reduce compression power by more than 10% while maintaining robust operation over a wide range of ambient temperatures and CO_2 densities that are typical for dry-cooled sCO_2 cycles in arid climates. The new rotary liquid piston compressor also eliminates the need for gas lubricated bearings & dry gas seals, thus providing added advantage of rotordynamic stability, mechanical robustness & life over traditional compressors. Thermodynamic cycle analyses and ID compressible flow analysis of multi-phase compression inside the rotary LPC is presented. An advanced 3D multi-phase flow model is developed to study fundamental physics of multi-species transport, diffusion & mixing of species and liquid-supercritical interface compression & decompression. This 3D model is used to validate some of the assumptions made in the 1D model. Various performance curves are developed to study the effect of lead flow, rotational speed and compressor inlet temperature on CO_2 exit mass flow rate, % mixing of the two species, compression power requirements and overall compression efficiency. Optimization study on above system variables is carried out and a set of guidelines for use of rotary LPC in sCO_2 compression is established.
机译:本文介绍了使用新型旋转液体活塞压缩机(LPC)的跨临界/超临界CO2(sCO_2)再压缩布雷顿循环。这种新型的多相压缩机利用泵送的动力流体,该动力流体与旋转管道缸中的sCO_2相互作用,从而以较低的硬件成本进行有效的CO_2压缩。泵送动力流体所需的能量可以大大低于在传统压缩机中压缩CO_2所需的能量。压缩机利用低可压缩性,低扩散性,低溶解度的液体作为动力流体来对过程流体(sCO_2)进行加压。在再压缩sCO_2布雷顿循环中,它可替代主压缩机使用,预计可将压缩功率降低10%以上,同时可在广泛的环境温度和CO_2密度范围内保持稳定运行,这在干式sCO_2循环中很常见干旱的气候。新型旋转液体活塞式压缩机还消除了对气体润滑轴承和干气密封件的需求,因此与传统压缩机相比,转子动力稳定性,机械强度和使用寿命得到了更多的优势。提出了旋转式LPC内部多相压缩的热力学循环分析和ID可压缩流动分析。开发了一种先进的3D多相流模型,以研究多物种运输,物种扩散和混合以及液体-超临界界面压缩和减压的基本物理学。此3D模型用于验证1D模型中所做的某些假设。开发了各种性能曲线,以研究铅流量,转速和压缩机入口温度对CO_2出口质量流量,两种物质的混合百分比,压缩功率要求和整体压缩效率的影响。进行了上述系统变量的优化研究,并建立了一套在sCO_2压缩中使用旋转LPC的准则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号